San Bernardino County Sheriff's Department Traffic Collision Reconstruction Course <u>Course Outline</u>

- I. Introduction and Orientation
 - A. Registration
 - 1. Sign-in
 - 2. Payments
 - B. Orientation
 - 1. Restrooms
 - 2. Breaks
 - C. Introduction
 - 1. Instructor introductions
 - D. Equipment
 - 1. Scientific Calculator
 - 2. Drafting Equipment
 - a. Traffic template
 - b. Flex curve
 - c. Engineers ruler
 - d. Protractor
 - e. Compass
 - f. Pencil
 - g. Eraser
 - h. Parallel rulers
 - E. Recommended txt
 - 1. Traffic Accident Reconstruction Manual (Volume 2, The Traffic Accident Investigation Manual), Lynn B. Fricke, Northwestern University Traffic Institute.
 - F. Course goals
 - 1. To provide a means of gaining the knowledge, skill, and experience necessary to interpret the evidence available in a traffic collision.
 - 2. To enhance the level of understanding and cultivate the ability to express complex concepts in a clear and concise language.
 - 3. To become familiar with the current trends in Traffic Collision Reconstruction and experiment with these techniques and methodologies in a controlled environment.
- II. Mathematics and Physics Review
 - A. Mathematics
 - 1. Basic mathematics (hierarchy)
 - 2. Review of algebra and right-angle trigonometry
 - 3. Trigonometry
 - B. Physics
 - 1. Newton's Laws of Motion
 - a. First law of motion
 - b. Second law of motion
 - c. Third law of motion
 - 2. Physics definition of acceleration and velocity
 - 3. Mass and weight

- a. Definition of relationships
- b. Concept of center of gravity
- 4. Work Kinetic energy relationship
- 5. Impulse and momentum
 - a. Derived
 - b. Definition
 - c. Examples of application to vehicle collisions
- 6. Friction
 - a. Physics definition
 - b. Coefficient of friction, acceleration factors and G's
 - c. Review of resultant drag factors
- 7. Forces
 - a. Types of forces
 - b. Point of application
 - c. Force lines
 - d. Magnitude of the force
- III. Vehicle Dynamics
 - A. Location of the Center of Mass
 - 1. General concepts
 - 2. Three dimensional
 - a. Longitudinal
 - b. Lateral
 - c. Vertical
 - B. Collision Types
 - 1. Central Collisions
 - a. Definition
 - b. Translation vs. rotation
 - 2. Non-central collisions
 - a. Definition
 - b. Eccentric impacts
 - c. Rotation with translation
 - d. Flips and vaults
 - 3. Complete collisions
 - a. Definition
 - b. Concept of speed match-up
 - 4. Incomplete collisions
 - a. Definition
 - b. Sideswipes
 - C. Impact Sequence and Times
 - 1. Initial contact
 - 2. Maximum engagement
 - 3. Separation
 - D. Secondary Collisions
 - 1. Exterior collisions
 - 2. Interior collisions
 - a. Occupant kinematics

<u>Course Outline</u>

- E. Inferred Motion (Collision Placement)
 - 1. Matching of physical damage and force lines
 - 2. Matching vehicle wheels and contact points with the physical evidence
 - 3. Development of dynamics diagram from inferred motion
- IV. Conservation of Momentum Analysis
 - A. Momentum Analysis General Application
 - 1. Momentum defined
 - 2. Laws of Conservation of Momentum
 - a. Equation
 - 3. Derivation of the Law of Conservation of Momentum
 - 4. Application of the Law of Conservation of Momentum
 - a. Approach angles
 - i. Skidmarks
 - ii. Tire prints
 - iii. Damage analysis
 - iv. Dynamics diagrams
 - b. Departure angles
 - i. Skidmarks
 - ii. Tireprints
 - iii. Gouges
 - iv. Liquid dribble path
 - v. Final rest positions
 - vi. Dynamics diagrams
 - c. Weights
 - i. Weight scales
 - ii. Published data
 - d. Post-impact speeds
 - i. Post-impact collision analysis
 - ii. Vehicle dynamic equations
 - B. Methods for Solving Momentum Problems
 - 1. Parallelogram method (Vector diagramming)
 - a. Parallelogram defined
 - b. Vectors
 - c. Resultants
 - d. Scale
 - e. Calculation
 - 2. Mathematical method
 - a. Equations and symbols
 - b. Coordinate system
 - i. X-axis

ii. Y-axis

- 3. Collinear collision velocity analysis
 - a. With known pre-impact speeds
 - b. Unknown pre-impact speeds
 - c. Solution process and examples

- i. Head-on collisions
- ii. Rear-end collisions
- 4. Intersection collision velocity analysis
 - a. Coordinate system orientation
 - b. Application of X & Y axis conservation of momentum equations
 - c. Example problems
- C. Momentum Analysis Special Applications
 - 1. Shallow entry angle and collinear collisions unknown preimpact speeds
 - a. Shallow entry angle collision defined
 - b. Discussion of problems associated with speed analysis
 - 2. Large vehicle versus small vehicle collisions
 - a. Discussion of problems associated with speed analysis
- D. Discussion of Angular (Rotational) Momentum
- V. Auto Collisions involving Pedestrians/Bicyclists
 - A. Automobile vs. Pedestrians
 - 1. Relative vehicle codes
 - 2. Visibility & conspicuity of pedestrians
 - 3. Evidence in automobile vs. pedestrian collisions
 - 4. Quadratic equations
 - 5. Pedestrian trajectories
 - a. Wrap trajectory
 - b. Forward projection
 - c. Fender vault
 - d. Roof vault
 - e. Somersault
 - f. Restricted fender vault
 - g. Partial impact
 - B. Automobile vs. Bicyclists
 - 1. Relative vehicle codes
 - 2. Bicycle component failure
 - 3. Bicycle helmets
 - 4. Gear-inch formulae
 - 5. Evidence in automobile vs. pedestrian collisions
 - 6. Bicycle lean angles
 - 7. Bicycle braking distance formulae
 - a. Dry conditions
 - b. Wet conditions
 - 8. Misc. bicycle formulae
- VI. Reconstruction Methodology
 - A. Introduction
 - 1. Step-by-step walk through of a collision reconstruction
 - 2. Designed to put entire course in perspective
 - B. Scale Diagramming
 - 1. Necessity of scaling

- 2. Use of scale diagram in the reconstruction process
- 3. Scale models
- C. Damage Analysis
 - 1. Identification of contact versus induced damage
 - 2. Detailed measurements
 - 3. Preparation of scale diagrams/models of damage and undamaged vehicles
 - a. Use of the diagram/model in the reconstruction process
 - 4. Force line determination
 - 5. Inspection for mechanical defects and/or malfunctions
- D. Position Analysis
 - 1. Establishing locations of vehicles on the diagram based on physical evidence
 - 2. Significance of vehicle fluid trails
 - 3. Gouges and other evidence
 - 4. Overlapping areas of contact damage
 - 5. Aligning force lines
 - 6. Plotting vehicle positions
- E. Motion Analysis
 - 1. Vehicle movements with respect to the scene and each other
 - 2. Motion relative to the centers of mass
 - 3. Motion analysis should identify
 - a. Area of impact
 - b. Positions of rest
 - c. Other significant positions/events
 - 4. Motions analysis should examine the effects of vehicle motion on the occupants
 - a. Injury mechanisms
 - b. Seating position
 - c. Mode of ejection
 - d. Restraint systems
- F. Velocity Reconstruction
 - 1. Post-impact velocity analysis
 - a. Evaluate how each vehicle moved from the area of impact to the point of rest
 - b. Determine vehicle deceleration factors
 - c. Calculate post-impact speeds
 - 2. Impact velocity analysis
 - a. Determination of approach and departure angles from dynamics diagram and motion analysis
 - b. Determination of weights of vehicles
 - c. Unusual loading conditions
 - d. Momentum analysis
 - e. Calculations of impact speeds
 - 3. Pre-impact velocity analysis
 - a. Pre-impact acceleration

- b. Combining velocities
- 4. Speed changes
 - a. Vector speed changes
 - b. Comparisons with other known information to ensure consistency of calculated speeds
- VII. Vehicle Inspection
 - A. Reasons for inspections
 - 1. Fatal collisions
 - 2. Liability
 - 3. Rule out or find mechanical reasons for collision
 - B. Photography
 - 1. Reasons
 - 2. 8 points
 - 3. Specific components
 - 4. Documentation
 - C. Components to inspect
 - 1. Tires and wheels
 - 2. Speedometers
 - 3. Brake systems
 - 4. Steering systems
 - 5. Seatbelts
 - 6. Suspension systems
 - 7. Throttle systems
 - 8. Computers
 - D. How to inspect
 - 1. Methods
 - 2. Documentation
 - E. Report Writing/Court Room Testimony
 - 1. Document deficiencies
 - 2. Use photos in report
 - F. Courtroom Testimony
 - 1. Only testify to what you know
 - 2. Don't guess
 - 3. Know expertise
 - 4. Review report
 - 5. Be professional
- VIII. Speed from Crush
 - A. Introduction
 - 1. Explanation of speed change vs. initial speed
 - 2. Obtain more than one opinion when estimating speed from damage
 - 3. Record estimates for comparison
 - 4. Reliability of speed estimates from damage
 - B. Factors Affecting Vehicle Deformation
 - 1. Available energy
 - 2. Vehicle stiffness

Course Outline

- 3. Energy partition
- C. Methods
 - 1. Visual estimates (Closing-in-Method)
 - 2. Chart comparisons
 - 3. Linear regression equations
- IX. Heavy Vehicle Collisions
 - A. Introduction
 - 1. Definition of vehicle types
 - 2. Terminology
 - B. Special Considerations and Handling Characteristics
 - 1. Center of mass positions and effects of loading
 - 2. Commercial vehicle tires and drag factors
 - 3. Brakes and loading considerations
 - a. Types and adjustments
 - b. Effects of load versus proper adjustment
 - 4. Roll-over threshold and critical speed scuffs
 - C. Resultant Drag Factors
 - 1. Loading
 - 2. Braking efficiency
 - 3. Tire composition and roadway conditions
 - D. Jackknifing Characteristics and Impacts
 - 1. Case studies
- X. Case Studies/Course Review
 - A. To illustrate to the students the application of various analytic techniques to "real world" accidents and how accidents occur
 - 1. To determine if the students have a good grasp of the techniques presented
 - 2. Each case study is reviewed in order to provide the student with an opportunity to discuss their findings and how they relate to the actual situation
- XI. Final Examination and Critique
 - A. A combination of no more than a one hour written test and no less than three hours of case studies for skills demonstrations
 - 1. Number of cases will be based on case complexity
 - 2. Student will have to utilize skills learned to complete case studies which will show knowledge and understanding