ADVANCED TRAFFIC ACCIDENT

Expanded Outline

1.0) Introduction

a. Orientation

- b. Overview of Course
- c. Course Goals
- d. Review of the Nine-Cell Matrix

2.0) The Law

- a. Vehicle Code Updates
- b. Penal Code Updates
- c. Search and Seizure Review and Updates
 - 1. Discussion of current changes in search and seizure laws and court decisions.
 - 2. Review of evidence code and case law relevant to the collection of evidence.
- d. Elements of Major Violations
 - 1. Homicide
 - a) Murder
 - b) Manslaughter (Gross/Ordinary Negligence)
 - 2. Felony Hit and Run
 - 3. Felony Driving-Under-the-Influence
 - 4. Other Major Violations
- e. Civil Aspects
 - 1. Difference between criminal and civil procedure
- f. Case Law
 - 1. Introduction to case law research procedures
 - 2. Discussion of applicable decisions

3.0) Photography

4 Hours

- a. Review of Photographic Equipment
 - 1. Use of the standard 35mm camera
 - 2. Lenses and filters
 - 3. Flash equipment
 - 4. Film type and use
 - 5. Other accessories

1 Hour

- b. Advanced Techniques
 - 1. Shutter/Aperture
 - 2. Flash
 - 3. Infrared Photography
 - 4. Aerial Photography
- c. Introduction to Photogrammetry
 - 1. Perspective Grid Photography
 - 2. Terrestrial Photogrammetry
- d. Case Law

4.0) ENVIRONMENTAL FACTORS

- a. Definitions of engineering terms relevant to the roadway environment
- b. Examination of the scene
 - 1. Roadway environment
 - a. Roadway configuration
 - b. Roadway delineation
 - c. Controls
 - d. Roadway surface compositions
 - e. Weather and temperature
 - 2. Physical evidence
 - a. Points of rest
 - b. Tire marks
 - c. Gouge marks
 - d. Debris
 - e. Fluid spatter, trails, pools and other collision scene evidence
- c. Measuring the Roadway Environment
 - 1. Stationing
 - a. Straight roadway
 - b. Curved roadway
 - 2. Coordinate Method
 - a. Linear
 - b. Polar
 - 3. Spot-coordinate method
 - 4. Trilateration (Triangulation)
 - 5. Grid Method
 - 6. Use of photogrammetry techniques

- d. Engineering Diagrams
 - 1. Use of engineering diagrams (As-built plans)
 - 2. Interpretation

e. Photography

- 1. Photographing the roadway
- 2. Photographing physical evidence
- f. Case Law
- g. Practical Exercises
 - 1. Examination and measurement of roadway site
 - 2. Engineering diagrams
 - 3. Environmental photography

5.0) DIAGRAMMING

8 Hours

- a. Purpose of Scale Diagrams
 - 1. Medium for graphically recording collision site and physical evidence measurements.
 - 2. Provides the collision investigator with a perspective of the collision site, the evidence it contains, and their relationship that can be used to enhance the determination of collision cause factors.
 - 3. Utilized in all phases of collision reconstruction from the interpretation of physical evidence to the determination of area of impact, direction of travel, and velocities of collision-involved vehicles.

b. Equipment

- 1. Traffic template
- 2. Compass
- 3. Protractor
- 4. Engineer's scale ruler
- 5. Flex curve
- 6. Straight edges, triangles, etc.
- 7. Pencils, paper, erasers, etc.
- 8. Letering templates/devices
- 9. Other implements
- c. Information Required
 - 1. When to prepare scale diagrams
 - 2. How much and what type of information to include in diagrams

- d. Diagramming Techniques
 - 1. Planning the diagram
 - 2. Straight roadway
 - a. Center and lane lines
 - b. Edge lines, pavement edges, curbs and shoulders
 - c. Fixed objects
 - d. Vision obscurements
 - e. Tangent points
 - f. Establishing right angles
 - g. Traffic controls
 - h. Physical evidence
 - 3. Curved roadways
 - a. Center and lane lines
 - b. Edge lines, pavement edges, curbs and shoulders
 - c. Fixed objects
 - d. Vision obscurements
 - e. Tangent points
 - f. Traffic controls
 - g. Physical evidence
 - 4. Intersections
 - a. Center and lane lines
 - b. Edge lines, pavement edges, curbs and shoulders
 - c. Fixed objects
 - d. Vision obscurements
 - e. Tangent points
 - f. Angle of intersection
 - g. Crosswalks, curbs, sidewalks and other features
 - h. Intercept points
 - i. Traffic controls
 - j. Physical evidence
 - 5. Special Circumstances
 - a. Off-road collisions
 - b. Parking lots
 - c. Cross-sectional diagrams
 - (1) Vertical curves
 - (2) Roadway collisions
 - (a) Freefall collisions
- e. Practical Exercises
 - 1. Draw scale diagrams from information provided

6.0) VEHICLE FACTORS

- a. Major Components
 - 1. Tires and wheels
 - 2. Brakes
 - 3. Steering
 - 4. Suspension
 - 5. Glass
 - 6. Electrical
 - 7. Power trains
 - 8. Exhaust
 - 9. Restraints
 - 10. Lighting
- b. Reasons for Inspection
 - 1. Record damage
 - 2. Determine force lines
 - 3. Possible mechanical defects
 - 4. Occupant contact
- c. Inspection Process
 - 1. General walk around
 - a. Establish what basic factors are involved
 - b. Note unusual conditions
 - 2. Vehicle Damage Description
 - a. Exterior
 - 1. Contact damage
 - (a) Definition
 - (b) Examples
 - (c) How to record
 - 1) Vehicle outline sketches
 - 2) Vehicle profile
 - 3) Vehicle damage records
 - 2. Induced damage
 - (a) Definition
 - (b) Examples
 - (c) How to record
 - 3. Reason for distinguishing between contact and induced
 - 4. Imprints and transfers

- b. Interior
 - 1. Contact damage
 - 2. Induced damage
 - 3. Reason for distinguishing between contact and induced
 - 4. Imprints and transfers
- 3. What to Measure
 - a. All damage, whether new or old
 - b. Emphasis on major component displacement
 - c. Importance of not overlooking minor component damage
 - d. Horizontal, vertical and crush dimensions
 - e. Establishment of pre-crush dimensions
 - f. Occupant contact damage
- 4. How to Measure
 - a. Station line method through longitudinal axis of vehicle
 - b. Body line extension
 - c. Base line along the side or front of the vehicle
 - d. Rectangular stationing
 - e. Stand and cord
- 5. Motorcycle damage measurements
 - a. Measurement of wheelbase displacement
 - b. Examination of fork damage to determine extent of braking at impact
 - c. Usefulness in speed analysis
- d. Force Line Determination
 - 1. Methodology
 - 2. Explanation of changes in force magnitudes during impact
 - 3. Resultant force or direction of principle force
 - 4. Flow of the damage
 - 5. Occupant kinematics
 - 6. Accuracy of determination
 - 7. Force line estimates and their use in the accident reconstruction process
- e. Collision Deformation Classification (CDC)
- f. Photography
 - 1. How to photograph vehicular evidence
 - a. Exterior
 - b. Interior
 - c. Mechanical defects
- g. Vehicle Damage Diagram

- 1. Selection of appropriate scale
- 2. Plotting measurements from reference lines
- 3. Vehicle damage profile
- 4. Use in the accident reconstruction process

h. Use of Mechanical and Automotive Engineers as Experts

- 1. Mechanical inspections of vehicles
- 2. Analysis of component parts and systems failures
- 3. Expert witness testimony
- i. Lamp Analysis to Determine On of Off at Impact
- j. Legal Aspects of Vehicle Inspections
- k. Practical Exercises
 - 1. Measure, diagram, and photograph a damaged vehicle
 - 2. Determine lines of force
 - 3. Lamp analysis

7.0) HUMAN FACTORS

- a. Introduction to Human Factors/Overview
- b. Psychological Factors
 - 1. Cultural
 - 2. Emotional
 - 3. Suicidal
 - 4. Homicidal
- c. Physiological Factors
 - 1. Nervous system
 - 2. Senses
 - 3. Reaction time
 - (a) Perception
 - (b) Decision
 - (c) Reaction
 - (1) Reflex reaction
 - (2) Simple reaction
 - (3) Complex reaction
 - (4) Discriminative
- d. Altered Physiological Factors
 - 1. Physical handicap
 - 2. Medical condition
 - 3. Alcohol and drugs

- 4. Fatigue
- 5. Environment
- e. Witnesses
 - 1. Ability to perceive
 - 2. Field of view
 - 3. Education and experience
 - 4. Emotional condition
 - 5. Bias/Prejudices
- f. Mechanisms of Injury
 - 1. At-scene investigation
 - 2. Hospital follow-up
 - a. Description
 - b. Photographs
 - c. Medical records
 - 3. Morgue follow-up
 - a. Description
 - b. Photographs
 - c. Medical records
 - d. Autopsy evidence
 - 4. Collision trauma
 - 5. Intentional verses accidental
- g. Case Law

8.0) MATHEMATICS AND BASIC PHYSICS

- a. Mathematics
 - 1. Algebra review
 - 2. Right-angle trigonometry
 - 3. Quadratic equations
 - 4. Cartesian coordinate system
- b. Basic Physics
 - 1. Laws of motion
 - 2. Inertial reference systems
 - 3. Velocity and acceleration
 - a. Constant, Average, and Instantaneous
 - 4. Objects in freefall
 - 5. Resultant drag factor

9.0) TIME-POSITION ANALYSIS (KINEMATICS)

- a. Equation of motion with constant acceleration
 - 1. Refer to Advanced Traffic Accident variable list and equation sheet
- b. Outline and demonstration of solution process
- c. Time-position analysis problems

10.0) FREEFALL ANALYSIS

- a. Freefall equation and derivation
- b. Evidence associated with freefall accident
 - 1. Evidence of launch
 - 2. Evidence of trajectory
 - 3. Evidence of landing Freefall analysis problems
- c. Means to ensure the calculated speed is consistent with all parameters of the collision

11.0) FINAL EXAMINATION

- a. A combination of no more than one hour cognitive evaluation and no less than three hours of case evaluations
 - 1. Number of cases will be based on case complexity

7 Hours

4 Hours