July 20, 2012

Omya California
a Division of Omya, Incorporated
7225 Crystal Creek Road
Lucerne Valley, California 92356
Attention: Mr. Howard Brown

Dear Mr. Brown:

This letter transmits six copies of the Slope Stability Investigation report, prepared for the proposed Sentinel and Butterfield Mine Reclamation project, located south of Lucerne Valley, California.

We appreciate this opportunity to provide geotechnical services for this project. If you have questions or comments concerning this report, please contact us at your convenience.

Respectfully submitted,

CHJ CONSULTANTS

John S. McKeown, E.G.
Project Geologist

JMc:lb

Distribution: Omya California (6)
Dear Mr. Brown:

Attached herewith is the Slope Stability Investigation report, prepared for the proposed Sentinel and Butterfield Mine Reclamation project, located south of Lucerne Valley, California.

This report was based upon a scope of services generally outlined in our existing agreement, dated May 1, 2012, and other written and verbal communications.

We appreciate this opportunity to provide geotechnical services for this project. If you have questions or comments concerning this report, please contact this firm at your convenience.

Respectfully submitted,

CHJ CONSULTANTS

John S. McKeown, E.G.
Project Geologist

JMc/tlw
TABLE OF CONTENTS

INTRODUCTION ... 1
SCOPE OF SERVICES ... 2
PROJECT CONSIDERATIONS ... 2
SITE DESCRIPTION .. 3
FIELD INVESTIGATION .. 4
SITE GEOLOGY ... 5
FAULTING AND SEISMICITY .. 7
 Regional Faulting .. 7
 Local Faulting ... 8
SEISMIC ACCELERATION PARAMETERS ... 9
GROUNDWATER .. 10
SLOPE STABILITY ... 10
 Geologic Structure ... 11
 Sentinel Quarry .. 11
 Sentinel Quarry – Existing Slope Failure .. 13
 Butterfield Quarry ... 14
 Proposed Overburden Stockpiles .. 14
Slope Stability Calculations .. 15
 Global Stability Calculations .. 15
 Kinematic Analysis .. 19
CONCLUSIONS... 20
RECOMMENDATIONS ... 21
LIMITATIONS .. 22
CLOSURE .. 24
REFERENCES ... 25
AERIAL PHOTOGRAPHS REVIEWED ... 27
TABLE OF APPENDICES

APPENDIX "A" - GEOTECHNICAL MAPS

Index Map	"A-1"
Index Map	"A-1"
Geologic Map	"A-2.1"
Reclamation and Mining Plan	"A-2.2"
Geologic Index Map	"A-3"

APPENDIX "B" - KINEMATIC EVALUATION

Domain No. 1	Table "B-1.1"
Domain No. 2	Table "B-1.2"
Domain No. 3	Table "B-1.3"
Domain No. 4	Table "B-1.4"
Domain No. 5	Table "B-1.5"
Domain No. 6	Table "B-2"

Sentinel – Domain 1 Dip Azimuth 225°	"B-1.0"
Sentinel – Domain 1 Dip Azimuth 225°	"B-1.1"
Sentinel – Domain 2 Dip Azimuth 90°	"B-2.0"
Sentinel – Domain 2 Dip Azimuth 90°	"B-2.1"
Sentinel – Domain 2 Dip Azimuth 90°	"B-2.2"
Sentinel – Domain 2 Dip Azimuth 130°	"B-3.0"
Sentinel – Domain 2 Dip Azimuth 130°	"B-3.1"
Sentinel – Domain 2 Dip Azimuth 130°	"B-3.2"
Sentinel – Domain 2 Dip Azimuth 130°	"B-3.3"
Sentinel – Domain 3 Dip Azimuth 110°	"B-4.0"
Sentinel – Domain 3 Dip Azimuth 270°	"B-5.0"
Sentinel – Domain 4 Dip Azimuth 45°	"B-6.0"
Sentinel – Domain 4 Dip Azimuth 45°	"B-6.1"
Sentinel – Domain 4 Dip Azimuth 270°	"B-7.0"
Sentinel – Domain 4 Dip Azimuth 315°	"B-8.0"
Sentinel – Domain 4 Dip Azimuth 315°	"B-8.1"
Sentinel – Domain 5 Dip Azimuth 45°	"B-9.0"
Sentinel – Domain 5 Dip Azimuth 90°	"B-10.0"
Sentinel – Domain 5 Dip Azimuth 90°	"B-10.1"
Butterfield 3 – Domain 6 Dip Azimuth 90°	"B-11.0"
Butterfield 3 – Domain 6 Dip Azimuth 180°	"B-12.0"
Butterfield 3 – Domain 6 Dip Azimuth 180°	"B-12.1"
Butterfield 3 – Domain 6 Dip Azimuth 270°	"B-13.0"
Butterfield 3 – Domain 6 Dip Azimuth 360°	"B-14.0"
Butterfield 3 – Domain 6 Dip Azimuth 360°	"B-14.1"
TABLE OF APPENDICES

APPENDIX "C" - SLOPE STABILITY CALCULATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
</table>
| Slope Stability Analysis – Section A-A' | "C-1.1"
| Slope Stability Analysis – Section A-A' | "C-1.2"
| Slope Stability Analysis – Section C-C' | "C-2.1"
| Slope Stability Analysis – Section C-C' | "C-2.2"
| Slope Stability Analysis – Section E-E' | "C-3.1"
| Slope Stability Analysis – Section E-E' | "C-3.2"
| General Stockpile | "C-4.1"-"C-7.2" |
INTRODUCTION

During June and July, 2012, a slope stability investigation for the proposed Omya California a Division of Omya Incorporated (Omya California) Sentinel and Butterfield 3 (Butterfield) Amended Plan of Operations mine reclamation project was performed by this firm. The purpose of this study was to explore and evaluate the geotechnical/geological engineering conditions at the subject quarries and to provide slope stability evaluation for existing and future cut slopes and overburden embankments.

A Slope Stability Investigation report, prepared for a proposed south and west quarry expansion of the Sentinel quarry, dated July 8, 2003, was previously prepared by C.H.J., Incorporated. Information from the 2003 study was utilized to the extent possible for the current investigation.

To orient our investigation, a draft Reclamation Plan and Amended Mining Plan (AMP) dated July 16, 2012, and Existing Conditions Plan, dated April 17, 2012, prepared by Omya California, were furnished for our use.

The approximate location of the site is shown on the attached Index Map (Enclosure "A-1").

The results of our slope stability investigation, together with our conclusions and recommendations, are presented in this report.
SCOPE OF SERVICES

The scope of services provided during this investigation included the following:

- Review of published and unpublished literature and maps including geologic mapping by Mr. Howard Brown, Omya California's geologist
- Review of Omya California mine plans
- Review of previous CHJ studies for the Sentinel quarry and White Knob quarry
- Geologic mapping of the quarry areas
- Geologic (kinematic) evaluation of the proposed rock slopes and slope stability calculations of the proposed rock and fill slopes under static and seismic conditions
- Slope stability analysis of the proposed reclamation slopes
- Slope stability analysis of the proposed overburden embankments
- Evaluation of geologic hazards to the project including seismic shaking hazard

PROJECT CONSIDERATIONS

It is our understanding that the existing mine excavation may be expanded westward and southward and deepened relative to previously-permitted limits/elevations. The mine excavation is anticipated to expose rock materials of similar nature as those addressed in the currently-approved reclamation plan. This study was performed in order to evaluate the slope stability of the proposed excavated mine slopes and overburden embankments for the amended mine reclamation project.

Rock (limestone) slopes will be up to a maximum of approximately 625 feet high and inclined with an overall slope of approximately 48 degrees to 50 degrees. Mining will be conducted with approximately 60-foot high inter-bench slope faces inclined at 70 degrees in the Sentinel quarry and approximately 50-foot high inter-bench slope faces inclined at 70 degrees in the Butterfield 3 quarry. An intervening bench approximately 30 feet wide and 25 feet wide for the Sentinel and Butterfield 3
quarries, respectively, will be created. The placement of haulage roads across some slopes and the proposed benching plan will yield the approximate 48- to 50-degree overall slope angle. Our slope stability calculations for the proposed rock slopes are based upon the above slope configurations and are considered a conservative evaluation of final reclamation conditions.

In addition to rock slopes, overburden stockpile slopes were evaluated with regard to slope stability for several heights and bench configurations yielding overall reclaimed slope gradients of 2(h) to 1(v). These data were utilized in planning the final stockpile configurations for the subject quarries.

SITE DESCRIPTION

The Sentinel and Butterfield quarries are located along the range crest of the northern San Bernardino Mountains, approximately 7 miles south of the town of Lucerne Valley. The quarries occupy portions of sections 23 and 24, T3N, R1W, S.B.B.&M. Access to the quarries is by a haul road extending southerly from the Omya California processing plant along Crystal Creek Road. The Sentinel and Butterfield quarries produce high-purity limestone used for numerous commercial and industrial applications. The high-purity limestone deposits required for these applications are typically white in color and very high-purity calcium carbonate.

The subject quarries are located at the northeast edge of a relatively flat geomorphic surface that characterizes the higher elevations of the San Bernardino Mountains. As such, local natural topography and relief are much less than the adjacent steep north range front slopes.

A steep natural slope descends from the east side of the Sentinel quarry approximately 600 feet into Furnace Canyon at an inclination slightly flatter than 2(h) to 1(v). Remaining natural slopes to the northwest, west and south are flatter, consisting of the rolling hills that typify the higher elevations of the San Bernardino Mountains.

Mine slopes at the Sentinel quarry are inclined overall at approximately 1(h) to 1(v) and up to approximately 360 feet in height. The total area of the existing Sentinel quarry is approximately 40
acres. The south expansion includes an additional 6.5 acres, and the west expansion includes an additional 1.2 acres of currently disturbed ground. The west quarry expansion is minimal in scope, and will entail cutting back an existing slope to relocate an existing haul road. Since the existing quarry will be partially backfilled to approximately Elevation 7,305 feet, the reclaimed (ultimate) height of the quarry slopes will be reduced to a total height of less than 325 feet. Our rock slope stability analyses are conservative in that they utilize the full depth (maximum anticipated excavated slope heights) of the mined quarry prior to backfill.

Existing mine slopes at the Butterfield quarry consist of vertical to steep benched cut slopes inclined overall at 1(h) to 1(v) and up to approximately 55 feet in height. The maximum proposed benched mining slope height of the Butterfield quarry slope is approximately 250 feet including adjacent native slopes. Mining at the Butterfield quarry will be conducted with approximately 50-foot-high inter-bench faces (slopes) inclined at 70 degrees. An intervening terrace (bench) approximately 25 feet wide will be provided above each slope face, yielding the approximate 1(h) to 1(v) overall slope angle. Some slopes will include haulage roads. Overall finished slopes are anticipated to exhibit angles of 48 degrees to 50 degrees. The eastern half of the Butterfield quarry is planned to be backfilled with waste rock to elevations that approximate pre-mining topography.

The proposed mining and reclaimed configurations of the subject quarries are depicted on Enclosure "A-2.2".

Vegetation at the quarries consists of a moderate growth of mature trees and brush in the undisturbed areas. Vegetation is generally absent on the mine slopes.

FIELD INVESTIGATION

A Certified Engineering Geologist conducted geologic mapping of the existing mines slopes in the Sentinel and Butterfield quarries on June 7 and 8, 2012. Geologic structures were mapped in the field, including measurement of bedding/foliation, joint and fault orientations and geometry using a Brunton compass. Our focus in the field was on continuous features that might affect kinematic
stability of local slope faces. General material descriptions were also recorded; however, detailed
field mapping of named geologic units was not within the scope of our investigation. We utilized
prior mapping by Miller et al. (2001) based on unpublished geologic maps by Mr. Howard Brown,
Exploration and Mining Geologist of Omya California. Mr. James Rogers, Geologist of Omya
California, identified major and minor structural features of the subject quarries and provided an
overview of the various geologic units in the field. Aerial imagery and prior geologic mapping by
Mr. Howard Brown of Omya California was reviewed in our office. A Geologic Map (Enclosure "A-
2.1") based on data collected during the field investigation and mapping review are provided in
Appendix A.

SITE GEOLOGY

The Sentinel and Butterfield quarries are located in the northern portion of the San Bernardino
Mountains. The San Bernardino Mountains are part of the Transverse Ranges Geomorphic Province.
The San Bernardino Mountains are characterized by remnants of a relatively flat, uplifted
geomorphic surface as old as Miocene in age. These discontinuous remnants are separated by steep-
walled canyons and prominent peaks. The subject quarries are located along the northeast margin of
a remnant of this surface. The view from the highlands above the quarries looks out over Lucerne
Valley and the Mojave Desert Geomorphic Province to the north.

Most of the northern San Bernardino Mountains are underlain at a shallow depth by crystalline
bedrock of plutonic composition. However, remnants of Paleozoic metamorphic rocks are present in
the northern San Bernardino Mountains (Geologic Index Map, Enclosure "A-3"). These remnants
consist of moderate- to high-grade metamorphosed sandstones, shales, limestones, and dolomites
originally deposited in broad marine basins. The sequence of correlatable marine rocks has been
identified throughout the western United States, extending to Utah through Nevada and eastern
California.

The Sentinel and Butterfield quarries are located on a large roof pendant of Paleozoic marine rocks.
The oldest unit in the Paleozoic sequence present in the Sentinel quarry is the Cambrian Nopah
Formation. The Nopah Formation consists of moderately to thickly bedded, fine- to coarse-grained dolomite and dolomitic marble. The color is variable, but is generally light shades of gray, brown and yellow. The Nopah Formation was observed in the west Sentinel quarry area. Bedding is variable, but generally dips moderately to steeply toward the east.

The Mississippian Monte Cristo Limestone comprises the primary ore body of the Sentinel quarry and is separated from the Nopah Formation by a well-exposed north-northeast trending west-dipping high-angle reverse fault. The Monte Cristo Limestone includes several members, with the Bullion Member forming the majority of rock exposed in the Sentinel quarry. The Yellowpine Member comprises a small exposure in the southwest portion of Sentinel quarry. The Monte Cristo Limestone consists of white to yellowish marble in thin to thick beds. Bedding is variable and exhibits little structural control relative to joints in the Monte Cristo units. Generally, bedding in the Monte Cristo Formation dips westward at moderate angles.

The Pennsylvanian Bird Spring Formation is exposed at the ground surface across most of the south Sentinel quarry area and is shown to be in thrust fault contact with the Monte Cristo Limestone members to the north. The location of this thrust fault as depicted on the Geologic Map herein (Enclosure "A-2.1") is adopted from Miller et al. (2001). This mapping was conducted prior to quarry excavation; thus, the actual location of the thrust fault is to the southwest. Rock exposures in the southern portion of Sentinel quarry were generally poor due to an abundance of fill and surficial rock debris; therefore, this fault was not observed during field mapping. Bird Spring Formation exposed at the Sentinel quarry area is the lower part of the formation and generally consists of gray marble with chert nodules. Based on surface exposures, this unit is folded on a small and large scale. Variability in bedding orientation can be observed within individual outcrops. Upper Bird Spring Formation comprises the white calcite marble ore of the Butterfield quarry.

The lithologic units at the Sentinel and Butterfield quarries consist of sedimentary rocks that have been subjected to high-grade metamorphism. While bedding is generally well developed in these materials, no potentially weak primary clay or silt beds were observed. Therefore, bedding is not considered to be a dominant factor in the stability of the quarry walls.
Fill observed at the site is associated with material and debris stockpiles in the area of quarrying, as well as with roadways and general work areas. The more significant areas of fill are indicated on the Geologic Map (Enclosure "A-2.1").

FAULTING AND SEISMICITY

REGIONAL FAULTING:
The tectonics of the Southern California area are dominated by the interaction of the North American and Pacific tectonic plates, which are sliding past each other in a transform motion. Although some of the motion may be accommodated by rotation of crustal blocks such as the western Transverse Ranges (Dickinson, 1996), the San Andreas fault zone is thought to represent the major surface expression of the tectonic boundary and to be accommodating most of the transform motion between the Pacific Plate and the North American Plate. However, some of the plate motion is apparently also accommodated by other northwest-trending strike-slip faults that are related to the San Andreas system, such as the San Jacinto fault and the Elsinore fault. Local compressional or extensional strain resulting from the transform motion along this boundary is accommodated by left-lateral, reverse, and normal faults such as the Cucamonga fault and the nearby North Frontal fault zone.

The most significant fault to the site from a ground shaking standpoint is the North Frontal fault zone, exposed approximately 2 miles north of the site along the range front of the San Bernardino Mountains. This fault is a complex zone of left-lateral, thrust and reverse faults and forms the boundary between the Mojave Desert Geomorphic Province and the Transverse Ranges Geomorphic Province to the south. Since this fault dips at a moderate angle to the south, the fault plane is probably less than 2 miles beneath the site.

The Eastern California Shear Zone (ECSZ) is a zone of regional deformation traversing the Mojave Desert that includes a system of predominantly northwest-trending strike-slip faults. The ECSZ accommodates strain along the Pacific/North American Plate boundary across a zone approximately 65 miles wide and is thought to transfer as much as 15 percent of the total plate boundary shear into
the Great Basin area (Shermer and others, 1996). A number of faults of this system ruptured in combination during the 1992 Landers earthquake east of the site. Rupture of that event extended within approximately 25 miles of the mine area and included several faults (Hauksson, 1992). An earthquake of $M_{6.4}$, known as the Big Bear earthquake, occurred a few hours later. The Big Bear quake and its aftershocks occurred along a northeast-trending alignment located approximately 12 miles southeast of the site. The Hector Mine earthquake of 1999 occurred on the Lavic Lake and Bullion faults of the ECSZ. The Helendale fault, Lenwood-Lockhart fault, and Johnson Valley fault of this system are located approximately 4.9 miles northeast, 15-1/2 miles northeast, and 19 miles east-northeast of the site, respectively. These faults are major components of the ECSZ and are considered Holocene active.

The northwest-trending San Andreas fault is located approximately 18 miles southwest of the site. The toe of the mountain front in the San Bernardino area roughly demarcates the presently active trace of the San Bernardino mountains segment. Youthful fault scarps, vegetational lineaments, springs and offset drainages, characterizes both segments. The Working Group on California Earthquake Probabilities (1995) tentatively assigned a 28 percent (±13 percent) probability to a major earthquake occurring on the San Bernardino Mountains segment of the San Andreas fault between 1994 and 2024.

LOCAL FAULTING:

No evidence of active faulting traversing the mapped area was found during our review of published and unpublished literature and maps, during our review of stereoscopic aerial photographs, or during the field mapping. Ground rupture due to primary fault slip in the mapped area is not anticipated.

Various faults were observed in the quarry walls. In the mapped areas, both high-angle and low angle faults were observed. Such faulting is typical of the northern San Bernardino Mountains, and most or all of these are likely to predate or be associated with uplift of the San Bernardino Mountains. Quaternary activity along these faults is unlikely.
In the west Sentinel quarry area, the Cambrian Nopah Formation is in reverse fault contact with the ore (Mississippian Monte Cristo Limestone). This fault strikes about N30E and dips steeply (70 degrees) toward the northwest.

A thrust fault is exposed in the southern portion of the existing Sentinel quarry. The thrust dips toward the south-southwest at a moderate angle (45 degrees) and places the Pennsylvanian Bird Spring Formation over the older Monte Cristo Limestone. In the south Sentinel quarry, the dark gray limestone of the Bird Spring Formation represents a significant overburden on the ore body.

Various high-angle faults of limited continuity are exposed in the existing Butterfield quarry walls. These faults include intruded fault zones that exhibit thick gouge zones and limited exposure.

SEISMIC ACCELERATION PARAMETERS

The 2010 California Building Code (CBC) Design Acceleration Parameters for structures were determined from latitude/longitude coordinates N34.3303, W116.9413 using the web-based U.S. Geologic Survey application - http://earthquake.usgs.gov/hazards/designmaps/javacalc.php - and are summarized in the following table. These data are provided for reference only since no CBC structures are addressed by this report. The corresponding value of peak ground acceleration (PGA) from the design acceleration spectrum according to the 2010 CBC is 0.52g.

<table>
<thead>
<tr>
<th>2010 CBC - Seismic Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped Spectral Acceleration Parameters</td>
<td>(S_s = 1.94) and (S_1 = 0.75)</td>
</tr>
<tr>
<td>Site Coefficients</td>
<td>(F_a = 1.0) and (F_v = 1.0)</td>
</tr>
<tr>
<td>Adjusted Maximum Considered Earthquake (MCE) Spectral Response Parameters</td>
<td>(S_{MS} = 1.94) and (S_{M1} = 0.75)</td>
</tr>
<tr>
<td>Design Spectral Acceleration Parameters</td>
<td>(S_{DS} = 1.29) and (S_{D1} = 0.50)</td>
</tr>
</tbody>
</table>
GROUNDWATER

No evidence for springs or perched groundwater conditions was observed at the site during the geologic mapping or on the aerial photographs reviewed. The rock materials of the quarry areas are generally tight and are not readily susceptible to infiltration of precipitation. However, tension cracks created at the top of the working bench after blasting may collect water during periods of heavy or prolonged precipitation. Removal of loose materials from the intra-bench face during excavation of ore mitigates tension features from the bench and leaves tight rock in place.

Depth-to-groundwater data are not available for the site vicinity from the California Department of Water Resources (2011) or the U.S. Geological Survey (2011). The closest data available are from wells in the town of Lucerne Valley, north of the site and are not representative of site conditions.

Groundwater has not been encountered in exploratory borings drilled to 550 feet below ground surface (Howard Brown, personal communication). The current depth to groundwater at the site is not known but is expected to be greater than 550 feet below the ground surface. Based on the planned excavation depths, the expected depth to groundwater, and the presence of non-liquefiable bedrock, the potential for liquefaction and other shallow groundwater-related hazards at the site is considered to be non-existent.

SLOPE STABILITY

The term "landslide", as used in this report, refers to deep-seated slope failures that involve inter-bench-scale features that have the potential to reduce the long-term stability of finished quarry reclamation slopes. Landslides are typically related to the structure of the parent material. Surficial failures refer to shallow failures that affect limited inter-bench zones and may result in localized raveling of rock material. No evidence for deep-seated landsliding was observed in the quarry walls or on the aerial photographs reviewed. Minor surficial failures typically involving small rock falls or talus accumulations were observed in the quarry walls during this investigation. These surficial failures are considered a mining management/maintenance issue.
The susceptibility of a geologic unit to landsliding is dependent upon various factors, primarily: 1) the presence and orientation of weak structures, such as fractures, faults or clay beds; 2) the height and steepness of the pertinent natural or cut slope; 3) the presence and quantity of groundwater and 4) the occurrence of strong seismic shaking.

Given the steepness of natural slopes at the site and vicinity and the close proximity to the active North Frontal fault, the geologic materials at the site exhibit a low susceptibility to deep-seated landsliding.

GEOLOGIC STRUCTURE:

Geologic mapping of the subject quarries included observation of lithologic distribution and measurement of the orientation of bedrock structures in the quarry exposures that influence kinematic rock slope stability. We also included information from the geologic map by Miller et al. (2001) that is based on work by Mr. Howard Brown in the mine areas. The orientation of joints, bedding/foliation, dikes, and shear zones were mapped and recorded in tabular format (Tables "B-1.1" through "B-2"). Observations of potential failure modes for each mapping area were noted. Structural data were grouped into areas defined as domains that exhibit similar rock type and structural characteristics. Five domains were defined for the Sentinel quarry and one domain was defined for the Butterfield quarry based on a relative uniformity of structure and material.

Sentinel Quarry

The limestone and dolomite exposed within the Sentinel quarry are relatively pure from a slope stability standpoint. The predominant bedrock structures within the Sentinel quarry include faults, bedding/foliation, and poorly- to moderately-developed joint systems. A major west-dipping high-angle reverse fault exposed in the west wall of Sentinel quarry results in locally-daylighted east-dipping bedding/foliation of the Cambrian Nopah dolomite in its hanging wall. Localized intra-bench failures have formed in this structural system. Bedding/foliation is well-developed in the rock materials that comprise the hanging wall of this fault. Bedding/foliation exhibiting a consistent steep easterly dip was observed from the haul road cut slope down to the level of the exposed reverse fault.
plane at approximately elevation 7,490 feet amsl on the working bench. This bedding/foliation in the Nopah provides structural control of a recent slope failure and incipient tension crack feature observed near Location 21. However, this condition is confined to the Nopah dolomite unit exposed by current mining of the final quarry limits in the northern portion of the Sentinel quarry. With regard to potential future slides, this condition is mitigated by the proposed bench configuration and truncation of east-dipping hanging wall features by the west-dipping reverse fault that separates the Nopah and Bullion units. In the remaining areas of the Sentinel quarry, bedding/foliation is poorly defined and secondary to pervasive fracture or jointing with regard to discontinuities.

A low-angle shear zone that forms a relatively flat-lying, undulating, tight contact was observed near the current base of the Sentinel quarry at approximately elevation 7,290 feet amsl. This feature locally includes a brownish red gouge material that varies from very thin millimeter-thick to about 1 inch in thickness. Zones of dark gray to black dirty graphite or manganese oxide were also present locally within this zone. The orientation of this feature as measured on the east quarry wall is N73W, 27SW (strike north 73 degrees west, dipping 27 toward the southwest).

Other faults included on the map by Miller et al. (2001) are shown on Enclosure "A-2.1". These were not directly observed during mapping due to the presence of slough on existing slopes or location outside of the area of field mapping. These features were considered in our slope stability evaluation.

The majority of the rock mass in the Sentinel quarry exhibits pervasive (very closely spaced) random fractures (fractures not belonging to a defined joint set). The random fracture fabric forms a tight, well-healed and hard rock mass with respect to global stability. Jointing within the Sentinel quarry is generally characterized by closely-spaced, discontinuous joint sets (less than 3 feet) that only locally exhibit slightly- to moderately-continuous lengths (3 to 10 feet). Where present, joint sets were observed to form small faces and wedges and columnar blocks cut by orthogonal cross joints. Joint surfaces were generally moderately rough to rough and undulating as is common in carbonate materials. We focused our investigation on the more continuous structures as these have a greater potential to define kinematic behavior in rock masses.
Sentinel Quarry - Existing Slope Failure

Bedding/foliation in the hanging wall of a west-dipping fault formed in dolomite of the Nopah Formation exposed in the west wall of the Sentinel quarry dips steeply toward the east and forms several face-forming dip slopes locally. These bedding/foliation-defined slope faces range from about 3 square feet to 90 square feet in area as observed during our observations of the northwest portion of the Sentinel working bench. This geologic structural domain (described in the Kinematic Analysis section) is confined to the northwestern portion of the quarry excavation above the west-dipping fault that separates Nopah Formation overburden from Bullion Member ore.

During winter 2011-2012, an approximately 250-foot-long segment of rock slope adjacent to a working bench slid along this bedding/foliation-defined dip slope system generating a shallow slope failure confined to a single cut slope, resulting in accumulation of debris on the working bench. This shallow failure occurred along a clay-rich east-dipping bedding plane fault and essentially scaled the slope back along a dip slope (a slope of the surface of the land determined by and conforming approximately to the dip of the underlying rocks). The resulting slope does not exhibit day-lighted bedding/foliation or joint structures. Adjacent to this area of slope failure, a section of bench approximately 150 feet long with an incipient tension crack remained north of the original failure section. We understand that mitigation of the remaining shallow feature, including scaling of loose material, is ongoing. Finished bench widths below the failure area will be adjusted as necessary to result in the desired overall slope angle during creation of final quarry slopes. Recurrence of deep-seated failures after mining is completed in this area is not anticipated based on the relation of proposed bench configurations to the geologic structure.

Due to the purity of the limestone and dolomite, no significant clay or silt layers are expected to be exposed in the proposed cut slopes. Fracturing/jointing is significant, and may reduce the effective cohesion of individual blocks of rock in proposed slopes. However, the closely-spaced and random jointing also effectively limits the depth and areal extent of any slope failures that could occur. Based on these data and the results of our investigation, deep-seated landsliding is not anticipated in the proposed slopes. Further analyses of the proposed slopes is presented later as slope stability calculations.
Butterfield Quarry
The limestone and dolomite exposed within the Butterfield quarry are relatively simple from a slope stability standpoint, with no adversely-oriented weak clay or silt beds observed in natural or mined exposures. The rock mass exposed in the Butterfield quarry exhibits much less pervasive fracture and forms larger volumes of intact rock between structures. Structural features observed in the Butterfield exposures include faults, joints, shear zones and bedding.

Bedding in the Butterfield quarry exhibits low to moderate dips to the east and north east.

The Butterfield quarry exposes thick bedded metamorphosed Upper Bird Spring generally white calcium carbonate marble units that are characterized by moderately- to well-developed joints exhibiting generally steep orientations. Jointing within the Butterfield quarry is generally characterized by regularly-spaced discontinuous joint sets (less than 3 feet) and more-continuous joints that exhibit moderately continuous lengths (3 to 10 feet). The fracture fabric forms a tight, well-healed and hard rock mass. The steep joint structure results in few daylighted planar features with potential to form slope failures. The dominant potential failure mode in the Butterfield quarry is topple-type failure of columnar joint systems. These blocks or columns are of limited volume and are easily mitigated by scaling with excavation equipment during recovery of ore following blasting. Joint surfaces were generally moderately rough to rough and undulating as is common in carbonate materials. We focused our investigation on the more continuous structures as these have a greater potential to estimate kinematic behavior in rock masses.

Faults within the Butterfield quarry are generally high angle or favorably-oriented, steeply-dipping structures, resulting in no out-of-slope fault orientations that could act as slip surfaces for large landslides or failures.

Proposed Overburden Stockpiles
Overburden stockpiles with maximum heights up to 165 feet above adjacent grade and 215 feet above adjacent grade are proposed for the Butterfield and Sentinel quarries, respectively. These stockpiles
are constructed at gradients of 2(h) to 1(v) with overburden material that exhibits variable grain size from silt- to boulder-size material. The variability in grain size results in a slope that forms a network of interlocking coarse-grained clasts infilled with finer-grained sediments. For purposes of slope stability calculation for the proposed overburden stockpile slopes, we have utilized a cohesion value of 100 psf to account for the apparent cohesion generated due to grain to grain contacts and a phi angle of 35 degrees. The actual values for materials of this type are typically greater than the modeled values so our calculations are considered conservative with respect to stability.

SLOPE STABILITY CALCULATIONS:
We evaluated the kinematic (potential failure modes) and global slope stability of the proposed reclamation slopes for Sentinel and Butterfield quarries for representative material types. Rock strength properties for global stability calculations were modeled using Hoek Brown criteria and the ultimate mining depths (highest slopes) anticipated in each quarry. Final quarry bottom elevations in the Sentinel quarry and eastern portion of the Butterfield quarry include backfill that will result in shorter overall slope heights. A discussion and summary of these analyses is presented below. Slope stability data and calculations are presented in Appendices "B" and "C".

Global Stability Calculations
We evaluated proposed mining rock slopes for the Sentinel and Butterfield quarries for native-over-cut and overburden-over-cut rock slopes. We also evaluated several configurations of proposed overburden stockpile (fill) slopes including heights of 250 feet, 400 feet and 560 feet.

The global (rotational) stability of proposed mining slopes as depicted in the Amended Mining Plan and proposed reclamation stockpiles as depicted in the Reclamation Plan was analyzed using Spencer's method under both static and seismic conditions for rotational failures utilizing the SLIDE computer program, version 6.0 (Rocscience, Inc., 2011). Selection of the AMP slope configurations for the analysis of excavated slopes, which depicts the tallest anticipated excavated/native slopes proposed for mining at the Sentinel and Butterfield quarries, is based on a most-conservative analysis approach. Reclamation is planned to fill portions of the quarry bottoms so that ultimate reclaimed slope heights will be shorter and the fill will be confined within the enclosed quarry pit.
Representative slope sections of the excavated rock slopes and overburden stockpiles derived from the AMP were modeled as follows:

- 730-foot high native-over-cut slope (Section A)
- 725-foot high fill-over-cut slope (Section C)
- 250-foot high native-over-cut slope (Section E)
- Various overburden slope configurations as presented in Table 4.

The seismic stability calculations were performed using a lateral pseudostatic coefficient "k" of 0.20 due to the proximity of the North Frontal fault zone. Groundwater was not considered in the global stability evaluation due to the lack of seepage or groundwater anticipated in the generally arid site environment.

The rock strength was modeled utilizing the Generalized Hoek-Brown criteria (Hoek, 2000 and Hoek, Carranza-Torres & Corkum, 2002), and the program's built-in parameter calculator with the following input values:

<table>
<thead>
<tr>
<th>Table 1: Sentinel Quarry - Monte Cristo and Bird Spring Bedrock Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope Stability Parameters</td>
</tr>
<tr>
<td>Value</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Unit Weight (pcf*)</td>
</tr>
<tr>
<td>Intact UCS(^{1}) (psf(^{**}))</td>
</tr>
<tr>
<td>Geological Strength Index</td>
</tr>
<tr>
<td>Intact Rock Constant (mi(^{***}))</td>
</tr>
<tr>
<td>Disturbance Factor</td>
</tr>
</tbody>
</table>

1 Uniaxial Compressive Strength test result
* pcf = pounds per cubic foot
** psf = pounds per square foot
*** mi = unitless constant
Table 2: Butterfield Quarry - Bird Spring Bedrock Units
Slope Stability Parameters

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Weight (pcf*)</td>
<td>150</td>
<td>--</td>
</tr>
<tr>
<td>Intact UCS¹ (psf**)</td>
<td>1,500,000</td>
<td>Specimen requires more than one blow of a geological hammer to fracture it</td>
</tr>
<tr>
<td>Geological Strength Index</td>
<td>65</td>
<td>Blocky with good surface conditions</td>
</tr>
<tr>
<td>Intact Rock Constant (mi***)</td>
<td>9</td>
<td>Marble</td>
</tr>
<tr>
<td>Disturbance Factor</td>
<td>1</td>
<td>Production blasting</td>
</tr>
</tbody>
</table>

¹ Uniaxial Compressive Strength test result
* pcf = pounds per cubic foot
** psf = pounds per square foot
*** mi = unitless constant

The rock strength parameters were obtained from laboratory analysis of samples from the White Knob quarry that exposes similar carbonate rocks (CHJ, 2008). The Hoek-Brown criteria allows for estimation of rock mass properties based on field criteria such as how easily rock can be broken with a hammer.

The shear strength of overburden stockpiles is based on our direct shear testing results performed on relatively undisturbed samples collected during a prior investigation in the White Knob quarry that generates a similar-type overburden. An internal frictional angle of φ=35 degrees, a cohesive strength of C=100 psf, and a unit weight of 125 pcf were utilized to model the shear strength of overburden fill materials. An internal frictional angle of φ=38 degrees, a cohesive strength of C=200 psf, and a unit weight of 130 pcf were utilized to model the shear strength of native subgrade beneath overburden stockpiles.
The results of our global slope stability analyses are summarized below in Tables 3 and 4. Details of stability calculations including material type boundaries, strength parameters utilized, and the minimum factor of safety and critical slip surface are included in Enclosures "C-1.1" through "C-7.2".

Table 3: Summary of Slope Stability Results - Bedrock Mine Slopes

<table>
<thead>
<tr>
<th>Cross Section</th>
<th>Material</th>
<th>Slope Configuration</th>
<th>Static F.S.</th>
<th>Seismic F.S. (k=0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section A - Sentinel</td>
<td>Bullion</td>
<td>Native-over-cut</td>
<td>2.63</td>
<td>1.97</td>
</tr>
<tr>
<td>Section C - Sentinel</td>
<td>Bullion</td>
<td>Overburden-over-cut</td>
<td>2.72</td>
<td>2.19</td>
</tr>
<tr>
<td>Section E - Butterfield</td>
<td>Bird Spring</td>
<td>Native-over-cut</td>
<td>5.72</td>
<td>4.84</td>
</tr>
</tbody>
</table>

Table 4: Summary of Slope Stability Results

Overburden Stockpile Study

<table>
<thead>
<tr>
<th>Slope Configuration</th>
<th>Static F.S.</th>
<th>Seismic F.S. (k=0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous slope at 2:1</td>
<td>1.52</td>
<td>1.17</td>
</tr>
<tr>
<td>continuous slope at 2:1</td>
<td>1.48</td>
<td>1.13</td>
</tr>
<tr>
<td>3 segments at 26.6°</td>
<td>1.70</td>
<td>0.99*</td>
</tr>
<tr>
<td>2 benches at 50-foot width*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 segments at 26.6°</td>
<td>1.53</td>
<td>1.16</td>
</tr>
<tr>
<td>3 benches at 50-foot width</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Slope configuration not utilized in proposed reclamation slope design.
As shown in Tables 3 and 4, sufficient static factors of safety in excess of 1.5 and seismic factors of safety in excess of 1.1 were indicated for the modeled proposed rock and overburden slope configurations and satisfy Office of Mine Reclamation (OMR) guidelines.

KINEMATIC ANALYSIS:

Kinematic analysis involves the evaluation of bedrock stability based on the presence of structural discontinuities including joints, faults, shear zones, bedding and foliations. Kinematic analysis addresses only the potential failure mode(s) and does not consider mass or force in a limit-equilibrium analysis. Structurally-controlled kinematic failure modes include planar, wedge, and topple failures. Circular failure of highly fractured rock masses is also feasible and is considered in a global stability analysis (as presented previously).

Stereonet analysis for selected representative rock slopes was performed utilizing the data from mapped geologic structures within the site (Tables "B-1.1" through "B-2"). Rock slopes in the Sentinel quarry were evaluated for slopes with dip azimuths oriented at 45°, 90°, 110°, 130°, 225°, 270° and 315° and for Butterfield quarry at 90°, 180°, 270°, and 360° representing the suite of proposed slope aspects. The stereonet data are presented in Appendix "B". Locations of geologic structural mapping areas (domains) are indicated on the attached Geologic Map and Site Plan (Enclosure "A-2.1").

The proposed 70-degree intra-bench rock slopes were analyzed for wedge and plane failure modes where kinematic evaluation using Markland's Test indicated a potential failure mode. Appendix "B" presents the detailed kinematic analysis data. A cohesion value of 800 psi, a friction angle of 50°, and a rock density of 150 lbs/ft³ were utilized in the wedge and plane analyses based on typical values for site bedrock and the degree of surface roughness exhibited in the site bedrock. Results of these analyses are presented in Appendix "B".
The results of the planar and wedge failure mode analysis for individual structures indicate overall suitable intra-bench stability (factors of safety) of proposed mining and reclamation slopes in all domains and aspects.

CONCLUSIONS

On the basis of our field investigation and slope stability analyses, it is the opinion of this firm that the proposed mine excavation, stockpile placement, and reclamation of the Omya California Sentinel and Butterfield quarries is feasible from geotechnical engineering and engineering geologic standpoints, provided the recommendations contained in this report are implemented during mining.

In general, it appears that past quarry operations at both the Sentinel and Butterfield quarries have resulted in formation of grossly stable slopes.

Based upon our analyses, the proposed overall approximate 48- to 50-degree mine cut-slopes up to approximately 625 feet in height formed in limestone and marble rock are suitably stable against gross failure for the anticipated long-term conditions, including the effects of seismic shaking. The proposed 2(h):1(v) fill slopes meet the factor of safety criteria for static and seismic conditions.

Subsequent to blasting of the final rock slope walls, quarry operations may include the use of a scaling chain or mechanical equipment to assist in removal of loose or precarious blocks during removal of the ore. Adherence to the slope benching plan and consideration of newly-exposed adverse structural features (if present) during future quarry work can result in stable slopes after completion of quarry reclamation.

No evidence of active faulting was observed on the site during this investigation. Several inactive faults traverse the quarry areas.
The current depth to groundwater is expected to be greater than 550 feet bgs, and the proposed slopes are entirely within non-liquefiable bedrock. Therefore, the potential for liquefaction and other shallow groundwater hazards within the reclamation area is considered to be remote.

Moderate seismic shaking of the site can be expected to occur during the lifetime of the proposed mining and reclamation. This potential has been considered in our analyses and evaluation of slope stability.

Raveling processes during and after quarry operation, with time, will result in deposition of talus on benches. Talus left on the benches can facilitate revegetation and lend a more natural appearance to the reclaimed slopes. It is anticipated that any resulting boulders will be angular and relatively resistant to rolling.

Seepage or other indications of water in the rock mass were not visible during our field mapping. Existing finished excavated rock slopes in the northeastern wall of the Sentinel quarry exhibit angles consistent with planned finished slope angles. Over a period of approximately 40 years raveling of small rock clasts has formed accumulations of talus on bench surfaces creating a more continuous and natural slope appearance.

The arid environment of the site and non-porous, non-fractured nature of the site bedrock precludes significant groundwater in the proposed slopes, except on a very limited basis where water may be concentrated by geologic structures such as faults following periods of precipitation. Groundwater has never been encountered in exploratory borings drilled to at least 550 feet below ground surface (Howard Brown, personal communication).

RECOMMENDATIONS

Overall final cut slopes in the rock materials should be no steeper than approximately 1(h):1(v) up to a maximum height of approximately 625 feet.
Natural raveling processes will result in accumulation of talus on the excavated benches. This process has already occurred along many of the existing mine slopes. The talus will be left on the slopes to facilitate revegetation and to give the reclaimed slopes a relatively natural appearance. It is anticipated that any resulting boulders will be angular and relatively resistant to rolling. Any large, unstable, rounded boulders on slopes steeper than approximately 2(h) to 1(v) should be removed or stabilized where accessible. Areas below loose rock should be restricted and indicated by means of signage or fencing.

Geotechnical evaluation and design, management of mine bench geometry based on encountered conditions, or use of mechanical support systems can enhance the safety of or mitigate hazards in mining; however, monitoring of slope conditions for failure warning signs is the most important means for protecting mine workers (Girard and McHugh, 2000) as it can prevent exposure of personnel to potentially hazardous conditions. As is typical for any surface mining location, we recommend that the ongoing practice of periodic observation of mine benches above working areas for indications of potential instability continue during mine operations.

Final reclaimed fill slopes composed of overburden materials should be no steeper than 2(h):1(v) to the maximum proposed heights.

Slopes should be protected with berms and/or levees as necessary to prevent slope erosion in the areas where natural slopes drain onto the reclaimed slopes.

LIMITATIONS

CHJ Consultants has striven to perform our services within the limits prescribed by our client, and in a manner consistent with the usual thoroughness and competence of reputable geotechnical engineers and engineering geologists practicing under similar circumstances. No other representation, express or implied, and no warranty or guarantee is included or intended by virtue of the services performed or reports, opinion, documents, or otherwise supplied.
This report reflects the testing conducted on the site as the site existed during the study, which is the subject of this report. However, changes in the conditions of a property can occur with the passage of time, due to natural processes or the works of man on this or adjacent properties. Changes in applicable or appropriate standards may also occur whether as a result of legislation, application, or the broadening of knowledge. Therefore, this report is indicative of only those conditions tested at the time of the subject study, and the findings of this report may be invalidated fully or partially by changes outside of the control of CHJ Consultants. This report is therefore subject to review and should not be relied upon after a period of one year.

The conclusions and recommendations in this report are based upon observations performed and data collected at separate locations, and interpolation between these locations, carried out for the project and the scope of services described. It is assumed and expected that the conditions between locations observed and/or sampled are similar to those encountered at the individual locations where observation and sampling was performed. However, conditions between these locations may vary significantly. Should conditions be encountered in the field, by the client or any firm performing services for the client or the client's assign, that appear different than those described herein, this firm should be contacted immediately in order that we might evaluate their effect.

If this report or portions thereof are provided to contractors or included in specifications, it should be understood by all parties that they are provided for information only and should be used as such.

The report and its contents resulting from this study are not intended or represented to be suitable for reuse on extensions or modifications of the project, or for use on any other project.
CLOSURE

We appreciate this opportunity to be of service and trust this report provides the information desired at this time. Should questions arise, please do not hesitate to contact this office.

Respectfully submitted,
CHJ CONSULTANTS

John S. McKeown, E.G. 2396
Project Geologist

Jay J. Martin, E.G. 1529
Vice President

Allen D. Evans, G.E. 2060
Vice President

JSM/JJM/ADE:lb/tlw
REFERENCES

Rocscience, 2011, SLIDE ver 6.0: 2D Limit equilibrium slope stability for soil and rock slopes (computer program).

AERIAL PHOTOGRAPHS REVIEWED

San Bernardino County Flood Control District, February 5, 1990, Black and White Aerial Photographs, Photograph Numbers 9 Through 12.

U.S. Forest Service, August 29, 1965, Black and White Aerial Photographs, Photograph Numbers EPH-8, 9 and 10.
APPENDIX "A"

GEOTECHNICAL MAPS
APPENDIX "B"

KINEMATIC EVALUATION
Table B-1.1: Domain No. 1
Includes Sentinel Location 1

<table>
<thead>
<tr>
<th>Discontinuity No.</th>
<th>Continuity*</th>
<th>Geologic Unit</th>
<th>Structure Type</th>
<th>Dip Direction</th>
<th>Dip Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>160</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>162</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>358</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>250</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>slightly cont.</td>
<td>Bullion</td>
<td>joint</td>
<td>297</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>78</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>281</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>296</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>63</td>
<td>49</td>
</tr>
<tr>
<td>11</td>
<td>highly cont.</td>
<td></td>
<td>bedding</td>
<td>270</td>
<td>17</td>
</tr>
</tbody>
</table>

Table B-1.2: Domain No. 2
Includes Sentinel Locations 2,3, and 16 - 21

<table>
<thead>
<tr>
<th>Discontinuity No.</th>
<th>Continuity</th>
<th>Geologic Unit</th>
<th>Structure Type</th>
<th>Dip Direction</th>
<th>Dip Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>slightly cont.</td>
<td>Nopah Fm.</td>
<td>joint</td>
<td>110</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>288</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>slightly cont.</td>
<td></td>
<td>fault</td>
<td>308</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>moderately cont.</td>
<td></td>
<td>foliation</td>
<td>108</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>moderately cont.</td>
<td></td>
<td>foliation</td>
<td>90</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>226</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>165</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>130</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>very continuous</td>
<td></td>
<td>fault</td>
<td>270</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>111</td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>111</td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>moderately cont.</td>
<td></td>
<td>foliation</td>
<td>130</td>
<td>90</td>
</tr>
</tbody>
</table>
Table B-1.3: Domain No. 3
Includes Sentinel Locations 8 - 11

<table>
<thead>
<tr>
<th>Discontinuity No.</th>
<th>Continuity</th>
<th>Geologic Unit</th>
<th>Structure Type</th>
<th>Dip Direction</th>
<th>Dip Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>highly cont.</td>
<td>Bullion</td>
<td>shear zone</td>
<td>197</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>74</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>259</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>203</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>284</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>284</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>334</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>334</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>moderately cont.</td>
<td>shear zone</td>
<td>joint</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>95</td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>220</td>
<td>73</td>
</tr>
<tr>
<td>12</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>10</td>
<td>89</td>
</tr>
</tbody>
</table>

Table B-1.4: Domain No. 4
Includes Sentinel Locations 4 - 7

<table>
<thead>
<tr>
<th>Discontinuity No.</th>
<th>Continuity</th>
<th>Geologic Unit</th>
<th>Structure Type</th>
<th>Dip Direction</th>
<th>Dip Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>86</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>342</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>342</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>288</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>37</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>240</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>259</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>170</td>
<td>73</td>
</tr>
<tr>
<td>10</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>170</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>357</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>155</td>
<td>68</td>
</tr>
<tr>
<td>13</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>155</td>
<td>87</td>
</tr>
<tr>
<td>14</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>168</td>
<td>89</td>
</tr>
<tr>
<td>15</td>
<td>slightly cont.</td>
<td>joint</td>
<td>joint</td>
<td>273</td>
<td>74</td>
</tr>
<tr>
<td>16</td>
<td>moderately cont.</td>
<td>Bird Spring</td>
<td>foliation</td>
<td>235</td>
<td>25</td>
</tr>
<tr>
<td>Discontinuity No.</td>
<td>Continuity</td>
<td>Geologic Unit</td>
<td>Structure Type</td>
<td>Dip Direction</td>
<td>Dip Value</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>moderately cont.</td>
<td></td>
<td>foliation</td>
<td>255</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>moderately cont.</td>
<td></td>
<td>shear zone</td>
<td>301</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>29</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>305</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>287</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>60</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>240</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>126</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>265</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>slightly cont.</td>
<td></td>
<td>joint</td>
<td>245</td>
<td>64</td>
</tr>
<tr>
<td>11</td>
<td>highly cont.</td>
<td></td>
<td>bedding</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>moderately cont.</td>
<td>Yellowpine</td>
<td>shear zone</td>
<td>340</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>moderately cont.</td>
<td></td>
<td>shear zone</td>
<td>343</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>very continuous</td>
<td>Bird Spring</td>
<td>fault</td>
<td>210</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>very continuous</td>
<td>Bird Spring</td>
<td>fault</td>
<td>240</td>
<td>45</td>
</tr>
<tr>
<td>Discontinuity No.</td>
<td>Continuity*</td>
<td>Geologic Unit</td>
<td>Structure Type</td>
<td>Dip Direction</td>
<td>Dip Value</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>slightly cont.</td>
<td>joint</td>
<td>318</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>slightly cont.</td>
<td>joint</td>
<td>69</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>slightly cont.</td>
<td>joint</td>
<td>86</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slightly cont.</td>
<td>joint</td>
<td>93</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>slightly cont.</td>
<td>shear zone</td>
<td>312</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>moderately cont.</td>
<td>shear zone</td>
<td>314</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>slightly cont.</td>
<td>joint</td>
<td>267</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slightly cont.</td>
<td>joint</td>
<td>180</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>slightly cont.</td>
<td>joint</td>
<td>75</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slightly cont.</td>
<td>joint</td>
<td>278</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slightly cont.</td>
<td>joint</td>
<td>278</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slightly cont.</td>
<td>joint</td>
<td>347</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slightly cont.</td>
<td>joint</td>
<td>308</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slightly cont.</td>
<td>joint</td>
<td>22</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slightly cont.</td>
<td>joint</td>
<td>315</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slightly cont.</td>
<td>joint</td>
<td>30</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>highly cont.</td>
<td>bedding</td>
<td>90</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>slightly cont.</td>
<td>joint</td>
<td>313</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>slightly cont.</td>
<td>joint</td>
<td>304</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>slightly cont.</td>
<td>joint</td>
<td>360</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>moderately cont.</td>
<td>shear zone</td>
<td>270</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>moderately cont.</td>
<td>shear zone</td>
<td>285</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>moderately cont.</td>
<td>shear zone</td>
<td>158</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>slightly cont.</td>
<td>joint</td>
<td>80</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>slightly cont.</td>
<td>joint</td>
<td>320</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>slightly cont.</td>
<td>shear</td>
<td>10</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>slightly cont.</td>
<td>joint</td>
<td>10</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>slightly cont.</td>
<td>joint</td>
<td>359</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>slightly cont.</td>
<td>joint</td>
<td>359</td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

Domain 1 Azimuth 225 degrees

Plane Failure Analysis Input Data - Plane 1

(H) Height = 50 ft
(SF) Inclination of Slope Face = 70 °
(SS) Inclination of Upper Slope = 1 °
(SP) Inclination of Failure Plane = 63 °
(CO) Cohesive Strength of Failure Surface = 800 lb(f)
(PH) Friction Angle of Failure Surface = 50 °
(GR) Density of Rock = 150 lb(f)/ft 3
(GW) Density of Water = 62.4 lb(f)/ft 3
(AB) Starting Rock Bolt Angle = 0 °
(AR) Ending Rock Bolt Angle = 0 °
(AA) Bolt Angle Increment = 0 °
(T1) Starting Bolt Tension = 0 lb(f)
(T2) Ending Bolt Tension = 0 lb(f)
(T3) Bolt Tension Increment = 0 lb(f)
(AC) Horizontal Acceleration = 0.2 G
(TZ) Amount of Discontinuity = 0 decimal
(VSUR) Vertical Surcharge = 0 lb(f)
(HSUR) Horizontal Surcharge = 0 lb(f)

Tension Crack Location Unknown: Dry Slope

Plane Failure Analysis Output Data

(A) Contact Area = 47.43 ft 2
(W) Weight of Slice = 25016.27 lb(f)
(U) Water Force Normal to Failure Plane = 0 lb(f)
(V) Horizontal Water Force on Tension Crack = 0 lb(f)
(B) Worst Location, Horizontal Distance = 3.33 ft
(Z) Tension Crack Depth = 7.8 ft
(ZW) Depth of Water in Crack = 0 ft
(TH) Bolt Angle = 0 °
(T) Tension = 0 lb(f)
(F) Factor of Safety = 1.88
Domain 2 Azimuth 90 degrees

Plane Failure Analysis Input Data - Plane 1

(H) Height = 50 ft
(SF) Inclination of Slope Face = 70°
(SS) Inclination of Upper Slope = 1°
(SP) Inclination of Failure Plane = 63°
(CO) Cohesive Strength of Failure Surface = 450 lb(f)
(PH) Friction Angle of Failure Surface = 50°
(GR) Density of Rock = 150 lb(f)/ft³
(GW) Density of Water = 62.4 lb(f)/ft³
(AB) Starting Rock Bolt Angle = 0°
(AA) Bolt Angle Increment = 0°
(T1) Starting Bolt Tension = 0 lb(f)
(T2) Ending Bolt Tension = 0 lb(f)
(T3) Bolt Tension Increment = 0 lb(f)
(AC) Horizontal Acceleration = 0.2 G
(TZ) Amount of Discontinuity = 0 decimal%
(VSUR) Vertical Surcharge = 0 lb(f)
(HSUR) Horizontal Surcharge = 0 lb(f)

Tension Crack Location Unknown: Dry Slope

Plane Failure Analysis Output Data

(A) Contact Area = 47.43 ft²
(W) Weight of Slice = 25016.27 lb(f)
(U) Water Force Normal to Failure Plane = 0 lb(f)
(V) Horizontal Water Force on Tension Crack = 0 lb(f)
(B) Worst Location, Horizontal Distance = 3.33 ft
(Z) Tension Crack Depth = 7.8 ft
(ZW) Depth of Water in Crack = 0 ft
(TH) Bolt Angle = 0°
(T) Tension = 0 lb(f)
(F) Factor of Safety = 1.2

Domain 2 Azimuth 90 degrees

Plane Failure Analysis Input Data - Plane 2

(H) Height = 50 ft
(SF) Inclination of Slope Face = 70°
(SS) Inclination of Upper Slope = 1°
(SP) Inclination of Failure Plane = 62°
(CO) Cohesive Strength of Failure Surface = 800 lb(f)
(PH) Friction Angle of Failure Surface = 50°
(GR) Density of Rock = 150 lb(f)/ft³
(GW) Density of Water = 62.4 lb(f)/ft³
(AB) Starting Rock Bolt Angle = 0°
(AA) Bolt Angle Increment = 0°
(T1) Starting Bolt Tension = 0 lb(f)
(T2) Ending Bolt Tension = 0 lb(f)
(T3) Bolt Tension Increment = 0 lb(f)
(AC) Horizontal Acceleration = 0.2 G
(TZ) Amount of Discontinuity = 0 decimal%
(VSUR) Vertical Surcharge = 0 lb(f)
(HSUR) Horizontal Surcharge = 0 lb(f)

Tension Crack Location Unknown: Dry Slope

Plane Failure Analysis Output Data

(A) Contact Area = 46.85 ft²
(W) Weight of Slice = 28498.68 lb(f)
(U) Water Force Normal to Failure Plane = 0 lb(f)
(V) Horizontal Water Force on Tension Crack = 0 lb(f)
(B) Worst Location, Horizontal Distance = 3.8 ft
(Z) Tension Crack Depth = 8.7 ft
(ZW) Depth of Water in Crack = 0 ft
(TH) Bolt Angle = 0°
(T) Tension = 0 lb(f)
(F) Factor of Safety = 1.7
Domain 2 Azimuth 90 degrees

Rapid Wedge Failure Analysis Input Data - Wedge 1

(GR) Density of Rock = 150 lb/(f)/ft^3
(H) Height of Crest Above Intersection = 40 ft

Plane 1: (D1) Dip Value = 62°
(E1) Dip Direction = 111°
Plane 2: (D2) Dip Value = 63°
(E2) Dip Direction = 89°
Plane 3: (D3) Dip Value = 1°
(E3) Dip Direction = 90°
Plane 4: (D4) Dip Value = 70°
(E4) Dip Direction = 90°

Plane 1: (C1) Cohesion = 500 lb/(f)/ft^2
(P1) Friction Angle = 50°
Plane 2: (C2) Cohesion = 450 lb/(f)/ft^2
(P2) Friction Angle = 50°

Water Pressure: Cracks Completely Filled (Free Draining)

(GW) Density of Water = 62.4 lb/(f)/ft^3

(HW) Overall Vertical Height of Wedge = 0 ft

The slope face DOES NOT hang over the toe of the slope.

Rapid Wedge Failure Analysis Output Data

(F) Factor of Safety = 2.59
Water Pressure on both planes = 0 lb/(f)/ft^2

THERE IS CONTACT ON BOTH PLANES.
Domain 2 Azimuth 130 degrees

Plane Failure Analysis Input Data - Plane 1

(H) Height = 50 ft
(SF) Inclination of Slope Face = 70 °
(SS) Inclination of Upper Slope = 1 °
(SP) Inclination of Failure Plane = 62 °
(CO) Cohesive Strength of Failure Surface = 800 lb(f)
(PH) Friction Angle of Failure Surface = 50 °
(GR) Density of Rock = 150 lb(f)/ft³
(GW) Density of Water = 62.4 lb(f)/ft³
(A) Starting Rock Bolt Angle = 0 °
(AA) Bolt Angle Increment = 0 °
(T1) Starting Bolt Tension = 0 lb(f)
(T2) Ending Bolt Tension = 0 lb(f)
(T3) Bolt Tension Increment = 0 lb(f)
(AC) Horizontal Acceleration = 0.2 G
(TZ) Amount of Discontinuity = 0 decimal%
(VS) Vertical Surcharge = 0 lb(f)
(HS) Horizontal Surcharge = 0 lb(f)

Tension Crack Location Unknown: Dry Slope

Plane Failure Analysis Output Data

(A) Contact Area = 46.85 ft²
(W) Weight of Slice = 28496.68 lb(f)
(U) Water Force Normal to Failure Plane = 0 lb(f)
(V) Horizontal Water Force on Tension Crack = 0 lb(f)
(B) Worst Location, Horizontal Distance = 3.8 ft
(Z) Tension Crack Depth = 8.7 ft
(ZW) Depth of Water in Crack = 0 ft
(TH) Bolt Angle = 0 °
(T) Tension = 0 lb(f)
(F) Factor of Safety = 1.7

Plane Failure Analysis Input Data - Plane 2

(H) Height = 50 ft
(SF) Inclination of Slope Face = 70 °
(SS) Inclination of Upper Slope = 1 °
(SP) Inclination of Failure Plane = 62 °
(CO) Cohesive Strength of Failure Surface = 450 lb(f)
(PH) Friction Angle of Failure Surface = 50 °
(GR) Density of Rock = 150 lb(f)/ft³
(GW) Density of Water = 62.4 lb(f)/ft³
(A) Starting Rock Bolt Angle = 0 °
(AA) Bolt Angle Increment = 0 °
(T1) Starting Bolt Tension = 0 lb(f)
(T2) Ending Bolt Tension = 0 lb(f)
(T3) Bolt Tension Increment = 0 lb(f)
(AC) Horizontal Acceleration = 0.2 G
(TZ) Amount of Discontinuity = 0 decimal%
(VS) Vertical Surcharge = 0 lb(f)
(HS) Horizontal Surcharge = 0 lb(f)

Tension Crack Location Unknown: Dry Slope

Plane Failure Analysis Output Data

(A) Contact Area = 46.85 ft²
(W) Weight of Slice = 28496.68 lb(f)
(U) Water Force Normal to Failure Plane = 0 lb(f)
(V) Horizontal Water Force on Tension Crack = 0 lb(f)
(B) Worst Location, Horizontal Distance = 3.8 ft
(Z) Tension Crack Depth = 8.7 ft
(ZW) Depth of Water in Crack = 0 ft
(TH) Bolt Angle = 0 °
(T) Tension = 0 lb(f)
(F) Factor of Safety = 1.11
Domain 2 Azimuth 130 degrees

Plane Failure Analysis Input Data - Plane 3

(H) Height = 50 ft
(SF) Inclination of Slope Face = 70°
(SS) Inclination of Upper Slope = 1°
(SP) Inclination of Failure Plane = 61°
(CO) Cohesive Strength of Failure Surface = 800 lb(f)
(PH) Friction Angle of Failure Surface = 50°
(GR) Density of Rock = 150 lb(f)/ft³
(GW) Density of Water = 62.4 lb(f)/ft³
(AB) Starting Rock Bolt Angle = 0°
(AR) Ending Rock Bolt Angle = 0°
(AA) Bolt Angle Increment = 0°
(T1) Starting Bolt Tension = 0 lb(f)
(T2) Ending Bolt Tension = 0 lb(f)
(T3) Bolt Tension Increment = 0 lb(f)
(AC) Horizontal Acceleration = 0.2 G
(TZ) Amount of Discontinuity = 0 decimal%
(VSUR) Vertical Surcharge = 0 lb(f)
(HSUR) Horizontal Surcharge = 0 lb(f)

Tension Crack Location Unknown: Dry Slope

Plane Failure Analysis Output Data

(A) Contact Area = 46.32 ft²
(W) Weight of Slice = 31972.96 lb(f)
(U) Water Force Normal to Failure Plane = 0 lb(f)
(V) Horizontal Water Force on Tension Crack = 0 lb(f)
(B) Worst Location, Horizontal Distance = 4.26 ft
(Z) Tension Crack Depth = 0.56 ft
(ZW) Depth of Water in Crack = 0 ft
(TH) Bolt Angle = 0°
(T) Tension = 0 lb(f)
(F) Factor of Safety = 1.57

Rapid Wedge Failure Analysis Input Data - Wedge 1

(GR) Density of Rock = 150 lb(f)/ft³
(H) Height of Crest Above Intersection = 62.4 ft

Plane 1: (D1) Dip Value = 61°
(E1) Dip Direction = 166°

Plane 2: (D2) Dip Value = 62°
(E2) Dip Direction = 91°

Plane 3: (D3) Dip Value = 1°
(E3) Dip Direction = 130°

Plane 4: (D4) Dip Value = 70°
(E4) Dip Direction = 130°

Plane 1: (C1) Cohesion = 800 lb(f)/ft²
(P1) Friction Angle = 50°

Plane 2: (C2) Cohesion = 450 lb(f)/ft²
(P2) Friction Angle = 50°

Water Pressure: Cracks Completely Filled (Free Draining)

(GW) Density of Water = 0 lb(f)/ft³

(HW) Overall Vertical Height of Wedge = 0 ft

The slope face DOES NOT hang over the toe of the slope.

Rapid Wedge Failure Analysis Output Data

(F) Factor of Safety = 2.06

Water Pressure on both planes = 0 lb(f)/ft²

THERE IS CONTACT ON BOTH PLANES.
Domain 2 Azimuth 130 degrees

Rapid Wedge Failure Analysis Input Data - Wedge 2

(GR) Density of Rock = 150 lb/ft3
(H) Height of Crest Above Intersection = 62.4 ft

Plane 1: (D1) Dip Value = 61°
 (E1) Dip Direction = 168°
Plane 2: (D2) Dip Value = 62°
 (E2) Dip Direction = 113°
Plane 3: (D3) Dip Value = 1°
 (E3) Dip Direction = 130°
Plane 4: (D4) Dip Value = 70°
 (E4) Dip Direction = 130°

Plane 1: (C1) Cohesion = 800 lb/ft2
 (P1) Friction Angle = 50°
Plane 2: (C2) Cohesion = 800 lb/ft2
 (P2) Friction Angle = 50°

Water Pressure: Cracks Completely Filled (Free Draining)

(GW) Density of Water = 0 lb/ft3

(HW) Overall Vertical Height of Wedge = 0 ft

The slope face DOES NOT hang over the toe of the slope.

Rapid Wedge Failure Analysis Output Data

(F) Factor of Safety = 2.42
Water Pressure on both planes = 0 lb/ft2

THERE IS CONTACT ON BOTH PLANES.
Domain 4 Azimuth 45 degrees

Plane Failure Analysis Input Data - Plane 1

- (H) Height = 50 ft
- (SF) Inclination of Slope Face = 70°
- (SS) Inclination of Upper Slope = 1°
- (SP) Inclination of Failure Plane = 57°
- (CO) Cohesive Strength of Failure Surface = 800 lb(f)
- (PH) Friction Angle of Failure Surface = 50°
- (GR) Density of Rock = 150 lb(f)/ft³
- (GW) Density of Water = 62.4 lb(f)/ft³
- (AB) Starting Rock Bolt Angle = 0°
- (AR) Ending Rock Bolt Angle = 0°
- (AA) Bolt Angle Increment = 0°
- (T1) Starting Bolt Tension = 0 lb(f)
- (T2) Ending Bolt Tension = 0 lb(f)
- (T3) Bolt Tension Increment = 0 lb(f)
- (AC) Horizontal Acceleration = 0.2 G
- (TZ) Amount of Discontinuity = 0 decimal%
- (VSUR) Vertical Surcharge = 0 lb(f)
- (HSUR) Horizontal Surcharge = 0 lb(f)

Tension Crack Location Unknown: Dry Slope

Plane Failure Analysis Output Data

- (A) Contact Area = 44.63 ft²
- (W) Weight of Slice = 45874.24 lb(f)
- (U) Water Force Normal to Failure Plane = 0 lb(f)
- (V) Horizontal Water Force on Tension Crack = 0 lb(f)
- (B) Worst Location, Horizontal Distance = 6.11 ft
- (Z) Tension Crack Depth = 12.67 ft
- (ZW) Depth of Water In Crack = 0 ft
- (TH) Bolt Angle = 0°
- (T) Tension = 0 lb(f)
- (F) Factor of Safety = 1.3

Rapid Wedge Failure Analysis Input Data - Wedge 1

- (GR) Density of Rock = 150 lb(f)/ft³
- (H) Height of Crest Above Intersection = 40 ft

Plane 1:
- (D1) Dip Value = 72°
- (E1) Dip Direction = 89°

Plane 2:
- (D2) Dip Value = 65°
- (E2) Dip Direction = 342°

Plane 3:
- (D3) Dip Value = 1°
- (E3) Dip Direction = 45°

Plane 4:
- (D4) Dip Value = 70°
- (E4) Dip Direction = 45°

- (C1) Cohesion = 800 lb(f)/ft³
- (P1) Friction Angle = 50°

- (C2) Cohesion = 800 lb(f)/ft³
- (P2) Friction Angle = 50°

Water Pressure: Cracks Completely Filled (Free Draining)

- (GW) Density of Water = 0 lb(f)/ft³

- (HW) Overall Vertical Height of Wedge = 0 ft

The slope face DOES NOT hang over the toe of the slope.

Rapid Wedge Failure Analysis Output Data

- (F) Factor of Safety = 4.29

Water Pressure on both planes = 0 lb(f)/ft²

THERE IS CONTACT ON BOTH PLANES.
SENTINEL - DOMAIN 4 DIP AZIMUTH 315°

SLOPE STABILITY INVESTIGATION
PROPOSED AMENDED PLAN OF OPERATIONS FOR
THE SENTINEL AND BUTTERFIELD 3 QUARRIES
LUCERNE VALLEY, CALIFORNIA

FOR: OMYA CALIFORNIA

DATE: JULY 2012

JOB NUMBER 12399-8

CHJ Consultants
Domain 4 Azimuth 315 degrees

Rapid Wedge Failure Analysis Input Data - Wedge 1

(Gr) Density of Rock = 150 lb(f)/ft³
(H) Height of Crest Above Intersection = 40 ft

Plane 1: (D1) Dip Value = 66°
 (E1) Dip Direction = 341°
Plane 2: (D2) Dip Value = 80°
 (E2) Dip Direction = 253°
Plane 3: (D3) Dip Value = 1°
 (E3) Dip Direction = 315°
Plane 4: (D4) Dip Value = 70°
 (E4) Dip Direction = 315°

Plane 1: (C1) Cohesion = 800 lb(f)/ft²
 (P1) Friction Angle = 50°
Plane 2: (C2) Cohesion = 800 lb(f)/ft²
 (P2) Friction Angle = 50°

Water Pressure: Cracks Completely Filled (Free Draining)

(GW) Density of Water = 60 lb(f)/ft³

(HW) Overall Vertical Height of Wedge = 0 ft

The slope face DOES NOT hang over the toe of the slope.

Rapid Wedge Failure Analysis Output Data

(F) Factor of Safety = 6.55
 Water Pressure on both planes = 0 lb(f)/ft²

THERE IS CONTACT ON BOTH PLANES.
Domain 5 Azimuth 90 degrees

Plane Failure Analysis Input Data - Plane 1

(H) Height = 50 ft
(SF) Inclination of Slope Face = 70 °
(SS) Inclination of Upper Slope = 1 °
(SP) Inclination of Failure Plane = 56 °
(CO) Cohesive Strength of Failure Surface = 800 lb(f)
(PH) Friction Angle of Failure Surface = 50 °
(GR) Density of Rock = 150 lb(f)/ft³
(GW) Density of Water = 62.4 lb(f)/ft³
(AB) Starting Rock Bolt Angle = 0 °
(AR) Ending Rock Bolt Angle = 0 °
(AA) Bolt Angle Increment = 0 °
(T1) Starting Bolt Tension = 0 lb(f)
(T2) Ending Bolt Tension = 0 lb(f)
(T3) Bolt Tension Increment = 0 lb(f)
(AC) Horizontal Acceleration = 0.2 G
(TZ) Amount of Discontinuity = 0 decimal%
(VSUR) Vertical Surcharge = 0 lb(f)
(HSUR) Horizontal Surcharge = 0 lb(f)

Tension Crack Location Unknown: Dry Slope

Plane Failure Analysis Output Data

(A) Contact Area = 44.3 ft²
(W) Weight of Slice = 49372.99 lb(f)
(U) Water Force Normal to Failure Plane = 0 lb(f)
(V) Horizontal Water Force on Tension Crack = 0 lb(f)
(B) Worst Location, Horizontal Distance = 6.58 ft
(Z) Tension Crack Depth = 13.39 ft
(ZW) Depth of Water in Crack = 0 ft
(TH) Bolt Angle = 0 °
(T) Tension = 0 lb(f)
(F) Factor of Safety = 1.26
Domain 6 Azimuth 180 degrees

Rapid Wedge Failure Analysis Input Data - Wedge 1

(GR) Density of Rock = 150 lb/(f)/ft³
(H) Height of Crest Above Intersection = 40 ft

Plane 1: (D1) Dip Value = 79°
 (E1) Dip Direction = 265°
Plane 2: (D2) Dip Value = 83°
 (E2) Dip Direction = 97°
Plane 3: (D3) Dip Value = 1°
 (E3) Dip Direction = 180°
Plane 4: (D4) Dip Value = 70°
 (E4) Dip Direction = 180°

Plane 1: (C1) Cohesion = 800 lb/(f)/ft²
 (P1) Friction Angle = 50°
Plane 2: (C2) Cohesion = 800 lb/(f)/ft²
 (P2) Friction Angle = 50°

Water Pressure: Cracks Completely Filled (Free Draining)

(GW) Density of Water = 0 lb/(f)/ft³

(HW) Overall Vertical Height of Wedge = 0 ft

The slope face DOES NOT hang over the toe of the slope.

Rapid Wedge Failure Analysis Output Data

(F) Factor of Safety = 15.76
Water Pressure on both planes = 0 lb/(f)/ft²

THERE IS CONTACT ON BOTH PLANES.
Domain 6 Azimuth 360 degrees

Rapid Wedge Failure Analysis Input Data - Wedge 1

(GR) Density of Rock = 150 lb(f)/ft3
(H) Height of Crest Above Intersection = 40 ft

Plane 1: (D1) Dip Value = 86 °
(E1) Dip Direction = 277 °

Plane 2: (D2) Dip Value = 67 °
(E2) Dip Direction = 313 °

Plane 3: (D3) Dip Value = 1 °
(E3) Dip Direction = 180 °

Plane 4: (D4) Dip Value = 70 °
(E4) Dip Direction = 180 °

Plane 1: (C1) Cohesion = 800 lb(f)/ft2
(P1) Friction Angle = 50 °

Plane 2: (C2) Cohesion = 800 lb(f)/ft2
(P2) Friction Angle = 50 °

Water Pressure: Cracks Completely Filled (Free Draining)

(GW) Density of Water = 0 lb(f)/ft3

(HW) Overall Vertical Height of Wedge = 0 ft

The slope face DOES NOT hang over the toe of the slope.

Rapid Wedge Failure Analysis Output Data

(F) Factor of Safety = 3.43
Water Pressure on both planes = 0 lb(f)/ft2

THERE IS CONTACT ON BOTH PLANES.

Domain 6 Azimuth 360 degrees

Rapid Wedge Failure Analysis Input Data - Wedge 2

(GR) Density of Rock = 150 lb(f)/ft3
(H) Height of Crest Above Intersection = 40 ft

Plane 1: (D1) Dip Value = 79 °
(E1) Dip Direction = 263 °

Plane 2: (D2) Dip Value = 67 °
(E2) Dip Direction = 313 °

Plane 3: (D3) Dip Value = 1 °
(E3) Dip Direction = 180 °

Plane 4: (D4) Dip Value = 70 °
(E4) Dip Direction = 180 °

Plane 1: (C1) Cohesion = 800 lb(f)/ft2
(P1) Friction Angle = 50 °

Plane 2: (C2) Cohesion = 800 lb(f)/ft2
(P2) Friction Angle = 50 °

Water Pressure: Cracks Completely Filled (Free Draining)

(GW) Density of Water = 0 lb(f)/ft3

(HW) Overall Vertical Height of Wedge = 0 ft

The slope face DOES NOT hang over the toe of the slope.

Rapid Wedge Failure Analysis Output Data

(F) Factor of Safety = 2.18
Water Pressure on both planes = 0 lb(f)/ft2

THERE IS CONTACT ON BOTH PLANES.
APPENDIX "C"

SLOPE STABILITY CALCULATIONS
Factors of Safety: 2.63
Center: 1152.416, 8129.305
Radius: 1140.457
Left Slip Surface Endpoint: 84.146, 7730.002
Right Slip Surface Endpoint: 992.973, 7000.048

Material Name	Color	Unit Weight (lbs/ft³)	Strength Type	Cohesion (psf)	Phi (deg)
Clay | | 125 | Mohr-Coulomb | 500 | 15

Material Name	Color	Unit Weight (lbs/ft³)	Strength Type	UCS (psi)	m	s	a
Marble | | 150 | Generalised Hoek-Brown | 1.5e+006 | 0.738785 | 0.002828 | 0.501975

Project: Proposed Sentinel and Butterfield 3 Mine Reclamation Project
Analysis Description: Slope Stability Analysis - Section A-A'
Drawn By: CHJ Consultants
Author: Fred Yi, PhD, GE
File Name: 12399-8 sec A.slim
Scale: 1:2200
Date: 7/13/2012
Enclosure: C-1.1
Material Name	Color	Unit Weight (lbs/ft³)	Strength Type	Cohesion (psf)	Phi (deg)
Clay | Yellow | 125 | Mohr-Coulomb | 500 | 15

Factor of Safety: 1.97
Center: 1220.955, 8333.543
Radius: 1352.885
Left Slip Surface Endpoint: 13.032, 7724.265
Right Slip Surface Endpoint: 992.990, 7000.002
spencer
Factor of Safety: 2.72
Center: 888.707, 7891.261
Radius: 891.366
Left Slip Surface Endpoint: 11.147, 7734.985
Right Slip Surface Endpoint: 875.005, 7000.000

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>Brown</td>
<td>125</td>
<td>Mohr-Coulomb</td>
<td>500</td>
<td>15</td>
</tr>
<tr>
<td>Marble</td>
<td>White</td>
<td>150</td>
<td>Generalised Hoek-Brown</td>
<td>1.5e+006</td>
<td>0.738766</td>
</tr>
</tbody>
</table>

Project
Proposed Sentinel and Butterfield 3 Mine Reclamation Project

Analysis Description
Slope Stability Analysis - Section C-C'

Drawn By
CHJ Consultants

Author
Fred Yi, PhD, GE

Scale
1:2100

File Name
12399-8 sec C.slim

Date
7/13/2012

Enclosure
C-2.1
Factor of Safety: 4.84
Center: 77.555, 7882.735
Radius: 230.579
Left Slip Surface Endpoint: 41.451, 7655.000
Right Slip Surface Endpoint: 308.134, 7882.735

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>☢</td>
<td>125</td>
<td>Mohr-Coulomb</td>
<td>500</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>UCS (psf)</th>
<th>m</th>
<th>s</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marble</td>
<td>☻</td>
<td>150</td>
<td>Generalised Hoek-Brown</td>
<td>1.5e+006</td>
<td>0.738765</td>
<td>0.0025283</td>
<td>0.501975</td>
</tr>
</tbody>
</table>
Method: spencer
FS: 1.521970
Axis Location: 300,000, 683,622
Left Slip Surface Endpoint: 300,000, 100,000
Right Slip Surface Endpoint: 766,898, 333,448
Resisting Moment=5.43551e+008 lb-ft
Driving Moment=3.57137e+008 lb-ft
Resisting Horizontal Force=872921 lb
Driving Horizontal Force=573548 lb

Material Name | Color | Unit Weight (lbs/ft³) | Strength Type | Cohesion (psf) | Phi (deg)
 Native subgrade | | 130 | Mohr-Coulomb | 200 | 38
 Overburden | | 125 | Mohr-Coulomb | 100 | 35

OMYA Overburden Stockpile Stability

Analysis Description
General Stockpile

Drawn By: CHJ
Author: J. McKeown
Scale: 1:1514
File Name: 26d 250H no benches stat.slim
Date: 3/12/2012
Method: spencer
FS: 1.165600
Axis Location: 300.000, 683.622
Left Slip Surface Endpoint: 300.000, 100.000
Right Slip Surface Endpoint: 766.898, 333.449
Resisting Moment=6.14092e+008 lb-ft
Driving Moment=5.26847e+008 lb-ft
Resisting Horizontal Force=986526 lb
Driving Horizontal Force=848389 lb
Method: spencer
FS: 1.484800
Axis Location: 302.929, 1105.858
Left Slip Surface Endpoint: 300.000, 100.000
Right Slip Surface Endpoint: 1105.858, 500.000
Resisting Moment=2.25397e+009 lb-ft
Driving Moment=1.51803e+009 lb-ft
Resisting Horizontal Force=2.1242e+006 lb
Driving Horizontal Force=1.43063e+006 lb

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Water Surface</th>
<th>Ru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native subgrade</td>
<td></td>
<td>130</td>
<td>Mohr-Coulomb</td>
<td>200</td>
<td>38</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>overburden</td>
<td>yellow</td>
<td>125</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>35</td>
<td>None</td>
<td>0</td>
</tr>
</tbody>
</table>

OMYA - Overburden Stockpile Stability

Analysis Description
General Stockpile

Drawn By: CHJ
Author: J. McKeown
Scale: 1:2388
Date: 3/12/2012

File Name: 26d 400H no benches stat.slim
Method: spencer
FS: 1.127480
Axis Location: 304.869, 1109.737
Left Slip Surface Endpoint: 300.000, 100.000
Right Slip Surface Endpoint: 1109.737, 500.000
Resisting Moment=2.54654e+009 lb-ft
Driving Moment=2.25864e+009 lb-ft
Resisting Horizontal Force=2.39289e+006 lb
Driving Horizontal Force=2.12236e+006 lb

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft^3)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Water Surface</th>
<th>Ru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native subgrade</td>
<td></td>
<td>130</td>
<td>Mohr-Coulomb</td>
<td>200</td>
<td>38</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>overburden</td>
<td></td>
<td>125</td>
<td>Mohr-Coulomb</td>
<td>150</td>
<td>39</td>
<td>None</td>
<td>0</td>
</tr>
</tbody>
</table>
Method: spencer
FS: 1.534510
Axis Location: 802.199, 804.389
Left Slip Surface Endpoint: 800.000, 300.000
Right Slip Surface Endpoint: 1204.398, 500.000
Resisting Moment=3.72522e+008 lb-ft
Driving Moment=2.42820e+008 lb-ft
Resisting Horizontal Force=691880 lb
Driving Horizontal Force=450879 lb

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native subgrade</td>
<td></td>
<td>130</td>
<td>Mohr-Coulomb</td>
<td>200</td>
<td>38</td>
</tr>
<tr>
<td>overburden</td>
<td></td>
<td>125</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>35</td>
</tr>
</tbody>
</table>

OMYA - Overburden Stockpile Stability

Analysis Description

General Stockpile

Drawn By: CHJ
Author: J. McKeown
Date: 3/13/2012
Scale: 1:3219

File Name: 26H 560H __ benches stat.silm

Enclosure C-7.1