PRELIMINARY DRAINAGE STUDY ADDENDUM
TO
ADDRESS COUNTY COMMENTS
FROM MARCH, 2009 TO DATE
FOR
Tentative Tract Map No. 18255
Joshua Tree, California

Prepared for:
Terra Nova Planning & Research, Inc.
42635 Melanie Place, Suite 101
Palm Desert, CA 92211
(760) 341-4800

Prepared by:
FOMOTOR
ENGINEERING

225 S. Civic Drive, Suite 1-5
Palms Springs, California 92262
Phone (760)323-1842
Fax (760)323-1742

March, 2011
Table of Contents

I. Report

II. Reference Material
 a. Hydrologic Soils Group Map (Figure C-11 from SBCFCD Hydrology Manual)
 b. 100 Year, 1-Hour Precipitation Isohyetal (Figure B-10 from SBCFCD Hydrology Manual)

III. ITEM-1 Basin Routing Backup Data
 For Basin-B
 i. "Offsite-1", Pre Development Rational Method Analysis
 ii. Routing Analysis for Basin “B”
 For Basin-C
 i. “Offsite-1 +Onsite Area-1” Pre Development Rational Method Analysis
 ii. "Onsite Area-1” Post Development Rational Method Analysis
 iii. Routing Analysis for Basin “C”
 For Basin-A
 i. “Onsite Area-2”, Pre Development Rational Method Analysis
 ii. “Onsite Area-2”, Post Development Rational Method Analysis
 iii. Routing Analysis for Basin “A”

IV. ITEM-2 Storm Water Channel Analysis Backup Data
 For Channel-1
 i. “Offsite-1” Pre Development Rational Method Analysis
 ii. HecRas Analysis Channel-1, Pre and Post Development
 For Channel-2
 i. “Offsite-2” Pre Development Rational Method Analysis
 ii. HecRas Analysis Channel-2, Pre and Post Development

V. ITEM-4 Alta Loma Box Culvert
 i. R.C.B. Culvert Sizing Calculation Sheet

VI. Figures and Exhibits
 a. TTM 18255
 b. For Item-1 Basin Routing
 i. "Offsite-1”-Predevelopment Rational Method Analysis
 ii. "Offsite-1+Onsite Area-1”-PreDevelopment Rational Method Analysis
 iii. “Onsite Area-2”-PreDevelopment Rational Method Analysis
 iv. “Onsite Area-1 & Area-2”-Post Development Rational Method Analysis
 v. Onsite Area Drainage Map
 c. For Item-2 Storm Water Channel
 i. Offsite-2”-Predevelopment Rational Method Analysis
 ii. "Offsite-3”-Predevelopment Rational Method Analysis
 iii. “Hecras Analysis topo”-Onsite Pre developed
 iv. Hecras Analysis topo “-Onsite Post developed
 d. For Item-6 Lot T Street Crossing Channel 2
 i. Arizona Crossing Drawing Sheet
REPORT

Purpose of this report

The purpose of this report is to address March 2009, and subsequent staff comments on the “Preliminary Drainage Study for Tentative Tract Map 18225” originally dated October 2007, with subsequent revisions. The comments addressed are as follows:

Item 1 Basin Routing, Summary, please refer to the end of this section of an expanded report for Item 1

County Comments
Basin Routing Calculations to be for rational method Q100 on-site & off-site, with post development routed flow less than 80% of pre-development values.
Using Rainfall intensity curve slope of 0.7
Using desert hydrology to determine CN number
Using AMC III for 100 year flood analysis.

Also use the rational method, except at basins, where inlet and outlet hydrographs are to be created for basin routing purposes.

Summary results

For the easterly drainage areas, Off-site Area 1 + Basin B + On-site Area 1+ Basin C

Predevelopment Q100 = 247 cfs
Post development Q100 = 104 cfs, 42% of predevelopment flow < 80%, ok

For the westerly drainage area, On-site Area 2 + Basin A

Predevelopment Q100 = 46 cfs
Post development Q100 = 18.4 cfs, 40% of predevelopment flow < 80%, ok
Item 2 Storm water Channel down stream discharge

County comments
For the two storm water channels proposed through the project, obtain drainage easement letters from downstream owner if sheet flows are being concentrated into channel flows at the discharge location.
Down stream discharge velocities exceeding non-erosive velocity limit, for the two storm water channels.

Results
The proposed Channel down stream outlets have been flared so that storm water flow can return to approximate predevelopment velocities, and to a sheet flow condition.
Please note that the downstream property receives these storm flows via an existing reasonable well defined wash on the downstream property that appears to be approximately 500 feet wide. It appears the wash was formed as the result of erosion, and presumably it would continue to be subject to erosion.
We performed a pre and post development HEC RAS analysis of Q100 year bulked flow through each channel. The results are as follows:

Channel 1 (for off-site area 3 runoff)
Q100 bulked = 361 cfs
Pre development discharge velocity = 5.8 cfs
Post development discharge velocity = 5.7 cfs
Pre development flood width is approximately = 113 feet
Post development flood with is approximately = 115 feet

Channel 2 (for off-site area 2 runoff)
Q100 bulked = 760 cfs
Pre development discharge velocity = 1.6 cfs
Post development discharge velocity = 1.5 cfs
Pre development flood width is approximately = 337 feet
Post development flood with is approximately = 344 feet

Hence it appears pre and post development Channel 1 & 2 downstream discharge characteristics will be similar.
Item 3 Channel 1 upstream backflow

County comment
Check for possible flooding effect on APN 0601-492-05 where natural drainage course meets improved Channel 1 on the west property line.

Results/response
The improved Channel 1 has a larger cross-sectional area than the natural drainage course at the west property line, and a comparable slope. So backflow should not occur.
Also the portion of Channel 1 west edge that runs along the westerly property line in intended to be at existing grade to allow flood waters to sheet flow over the side of and into the channel. This is so as not to obstruct sheet flow patterns in the upstream area.
In reviewing the HEC RAS analysis flood widths at the westerly line junction, pre and post development, they appear comparable.

Item 4 Alta Loma CMP Culvert

County Comment
Size box culvert under Alta Loma Drive for 1.5 x Q100 for bulking.

Result/response
The culvert was conceptually sized for a bulked flow of 760 cfs using FlowMaster. The proposed culvert size is projected to be in the range of (4) 66 inch diameter Corrugated Metal Pipes (CMP) (at 2% minimum flow slope), after taking into account inlet & outlet losses.
Also as per a recent meeting with County staff, we added the following note to the Tentative Tract Map, “CMP Culvert Note, Alternative dipped road crossing with low flow culverts may be utilized in place of the box culverts indicated hereon. Traffic sight distance must be considered for any dip sections in the street.”
Also we now indicate (4) 66” diameter CMP culverts with a headwall on the upstream side on the Tentative Tract Map.

Item 5 Labeled Drainage Lot FF:

County comment
Lot FF is labeled as drainage lot, what is the deposition of this lot?

Response
We now label this as a landscape lot only on the Tentative Tract Map (TTM).
Item 6 Lot T street crossing Channel 2

County comment
Discuss how Lot T is crossing over Channel 2 and its affect on drainage.

Response
The street crossing through Channel 2 is an ‘at grade’ crossing (Arizona crossing) and should not meaningfully affect drainage in the channel. The crossing detail is attached.

Item 7 WSPG for 42" RCP storm drain

County comment
Revise WSPG for added flows.

Summary response
The storm drain has been conceptually sized during the Q100 rational method routing in On-site Area 1. A WSPG analysis should be run at a later date for final pipe line design and construction purposes.

Item 8 Blue Line Stream

Terra Nova has handled this as a separate item.
Expanded Report for Item 1

Item 1 Basin Routing

County Comments
Basin Routing Calculations to be for rational method Q100 on-site & off-site, with post development routed flow less than 80% of pre-development values.
Using Rainfall intensity curve slope of 0.7
Using desert hydrology to determine CN number
Using AMC III for 100 year flood analysis.

Also using the rational method, except at basins, where inlet and outlet hydrographs are to be created for basin routing purposes.

Methodology

The Rational Method pre & post development Q100 flows were computed using the ‘San Bernardino County Rational Method Hydrology Program’ by CIVILCADD/CIVILDESIGN Engineering software.

Basin Inlet hydrographs were constructed using the computed CIVILCAD program rational Q100 flow directed to the basin as the basin inflow hydrgaph peak flow, also the computed time of concentration Tc for the peak flow, and a run-off volume of Tributary area x Rainfall depth x 0.9.
For Basins A & C where there are two inlet pipes, the two individual pipe hydrographs are combined into one hydrograph for routing purposes through the Basin.

Hydrographs were routed through each basin using the Hydraflow program by intelisolve.

The following was done for the continuation of the downstream rational method computation in Onsite Area 1 after routing Off-site area 1 flow through Basin B. The computed peak outflow value from Basin B was used to start the On-site Area A rational method routing, with the input upstream ‘effective’ Off-site Area 1 area to make the program work calculated using the equation A = Q/0.9(I-Fm), which was derived from Q=0.9(I-Fm)A.

Results

For the easterly drainage areas, Off-site Area 1 + Basin B + On-site Area 1 + Basin C

Pre development
Off-site Area 1 + Onsite Area 1 Q100 = 247 cfs

Post development

Off-site Area 1 Q100= 158 cfs, Tc= 25.5 min.
Runoff volume = 0.9 x 1.3" x 76.9 acres = 7.5 acre-feet
Refer to Basin B inflow hydrograph, and basin routing printouts
Basin B outflow Q100= 55 cfs
Onsite Area 1 rational method starting effective upstream area = 48.8 acres for Q100 = 55 cfs
Refer to rational method exhibit and printouts
On-site Area 1,
West Pipe into Basin C Q100=126 cfs
East Pipe into Basin C Q100= 76.8 cfs
Runoff volume for inlet hydrograph = 0.9 x 1.25’ x 114.2 acres = 10.7 acre-feet
Combining hydrographs, Peak Q100= 201 cfs, Tc = 14.2 min.
Refer to individual and combined hydrographs, and basin routing printouts.
Basin C outflow Q100= 104 cfs.

Hence:
Predevelopment Q100 = 247 cfs

Post development Q100 = 104 cfs, 42% of predevelopment flow < 80%, ok

For the westerly drainage area, On-site Area 2 + Basin A

Predevelopment

On-site Area 2 Q100 = 46 cfs

Post development

On-site Area 2,
West Pipe into Basin A Q100= 13.6 cfs
East Pipe into Basin A Q100= 43.7 cfs
Combined hydrograph peak Q100= 54.4 cfs, Tc= 14 min.
Runoff volume = 0.9 x 1.25”x 18.14 acres = 1.7 acre-feet
Refer to individual and combined hydrographs, and basin routing printouts.
Basin A outflow Q100= 18.4 cfs.

Hence:
Pre development Q100 = 46 cfs

Post development Q100 = 18.4 cfs, 40% of predevelopment flow < 80%, ok
Reference Material
ITEM-1 Basin Routing Backup Data
For Basin-B
“Offsite -1”, Pre Development
Rational Method Analysis
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2004 Version 7.0
Rational Hydrology Study Date: 03/08/11

PRE DEV OFFSITE-1
TR 18255
Q100 1HR
RATIONAL METHOD

Program License Serial Number 4004

******** Hydrology Study Control Information *******

Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.300 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3

+---
| Process from Point/Station 1.000 to Point/Station 2.000 |
| **** INITIAL AREA EVALUATION **** |
+---

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077 (In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000 (Ft.)
Top (of initial area) elevation = 3569.000 (Ft.)
Bottom (of initial area) elevation = 3458.000 (Ft.)
Difference in elevation = 111.000 (Ft.)
Slope = 0.11100 s(%) = 11.10
TC = k(0.525)*((length^3)/(elevation change))^0.2
Initial area time of concentration = 12.915 min.
Rainfall intensity = 3.810 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q = KIA) is C = 0.882
Subarea runoff = 29.228 (CFS)
Total initial stream area = 8.700 (Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.077 (In/Hr)

+---
| Process from Point/Station 2.000 to Point/Station 3.000 |
| **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** |
+---

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.391 (Ft.), Average velocity = 4.631 (Ft/s)
!!Warning: Water is above left or right bank elevations

+---
| Information entered for subchannel number 1 |
| Point number 'X' coordinate 'Y' coordinate |
1	0.00	0.00
2	355.00	5.00
3	710.00	0.00
Manning's 'N' friction factor = 0.030		
+---

Sub-Channel flow = 50.297 (CFS)
 flow top width = 55.536 (Ft.)
 velocity = 4.631 (Ft/s)
 area = 10.860 (Sq. Ft.)
 Froude number = 1.846
Upstream point elevation = 3458.000(Ft.)
Downstream point elevation = 3385.000(Ft.)
Flow length = 947.660(Ft.)
Travel time = 3.41 min.
Time of concentration = 16.33 min.
Depth of flow = 0.391(Ft.)
Average velocity = 4.631(Ft/s)
Total irregular channel flow = 50.297(CFS)
Irregular channel normal depth above invert elev. = 0.391(Ft.)
Average velocity of channel(s) = 4.631(Ft/s)

WARNING: Water is above left or right bank elevations

Adding area flow to channel

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000
Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 3.233(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KClA) is C = 0.879
Subarea runoff = 42.077(CFS) for 16.400(Ac.)
Total runoff = 71.305(CFS)
Effective area this stream = 25.10(Ac.)
Total Study Area (Main Stream No. 1) = 25.10(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.446(Ft.), Average velocity = 5.054(Ft/s)

WARNING: Water is above left or right bank elevations

==
Process from Point/Station 3.000 to Point/Station 4.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.469(Ft.), Average velocity = 5.260(Ft/s)

WARNING: Water is above left or right bank elevations

******* Irregular Channel Data **********

Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 378.00 5.00
3 756.00 0.00

Manning's 'N' friction factor = 0.030

Sub-Channel flow = 87.578(CFS)
' ' flow top width = 70.955(Ft.)
' ' velocity= 5.260(Ft/s)
' ' area = 16.649(Sq.Ft)
' ' Froude number = 1.914
Upstream point elevation = 3385.000(Ft.)
Downstream point elevation = 3313.000(Ft.)
Flow length = 923.810(Ft.)
Travel time = 2.93 min.
Time of concentration = 19.25 min.
Depth of flow = 0.469(Ft.)
Average velocity = 5.260(Ft/s)
Total irregular channel flow = 87.578(CFS)
Irregular channel normal depth above invert elev. = 0.469(Ft.)
Average velocity of channel(s) = 5.260(Ft/s)

WARNING: Water is above left or right bank elevations

Adding area flow to channel

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077 (In/Hr)
Rainfall intensity = 2.881 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.875
Subarea runoff = 32.490 (CFS) for 16.030 (Ac.)
Total runoff = 103.794 (CFS)
Effective area this stream = 41.13 (Ac.)
Total Study Area (Main Stream No. 1) = 41.13 (Ac.)
Area averaged Fm value = 0.077 (In/Hr)
Depth of flow = 0.500 (Ft.), Average velocity = 5.489 (Ft/s)

!!Warning: Water is above left or right bank elevations

+++++++++++++++++++++++++++++-------------------------------------
Process from Point/Station 4.000 to Point/Station 5.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.523 (Ft.), Average velocity = 5.376 (Ft/s)

!!Warning: Water is above left or right bank elevations

******** Irregular Channel Data ********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 399.50 5.00
3 799.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 117.333 (CFS)
flow top width = 83.518 (Ft.)
velocity = 5.376 (Ft/s)
area = 21.825 (Sq.Ft)
Proude number = 1.853
Upstream point elevation = 3313.000 (Ft.)
Downstream point elevation = 3253.000 (Ft.)
Flow length = 850.890 (Ft.)
Travel time = 2.64 min.
Time of concentration = 21.89 min.
Depth of flow = 0.523 (Ft.)
Average velocity = 5.376 (Ft/s)
Total irregular channel flow = 117.332 (CFS)
Irregular channel normal depth above invert elev. = 0.523 (Ft.)
Average velocity of channel(s) = 5.376 (Ft/s)

Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077 (In/Hr)
Rainfall intensity = 2.633 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.874
Subarea runoff = 27.023 (CFS) for 15.730 (Ac.)
Total runoff = 130.817 (CFS)
Effective area this stream = 56.86 (Ac.)
Total Study Area (Main Stream No. 1) = 56.86 (Ac.)
Area averaged Fm value = 0.077 (In/Hr)
Depth of flow = 0.544 (Ft.), Average velocity = 5.524 (Ft/s)

!!Warning: Water is above left or right bank elevations

+++++++++++++++++++++++++++++-------------------------------------
Process from Point/Station 5.000 to Point/Station 6.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.559 (Ft.), Average velocity = 5.491 (Ft/s)

!!Warning: Water is above left or right bank elevations
******** Irregular Channel Data **********

Information entered for subchannel number 1:
Point number	'X' coordinate	'Y' coordinate
1 | 0.00 | 0.00 |
2 | 408.50 | 5.00 |
3 | 817.00 | 0.00 |
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 140.310 (CFS)
' ' flow top width = 91.379 (Ft.)
' ' velocity = 5.491 (Ft/s)
' ' area = 25.551 (Sq.Ft.)
' ' Froude number = 1.830

Upstream point elevation = 3253.000 (Ft.)
Downstream point elevation = 3200.000 (Ft.)
Flow length = 788.420 (Ft.)
Travel time = 2.39 min.
Time of concentration = 24.28 min.
Depth of flow = 0.559 (Ft.)
Average velocity = 5.491 (Ft/s)
Total irregular channel flow = 140.309 (CFS)
Irregular channel normal depth above invert elev. = 0.559 (Ft.)
Average velocity of channel(s) = 5.491 (Ft/s)

!!Warning: Water is above left or right bank elevations

Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000
Max loss rate (Fm) = 0.077 (In/Hr)
Rainfall intensity = 2.449 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KClA) is C = 0.872
Subarea runoff = 18.889 (CFS) for 13.270 (Ac.)
Total runoff = 149.706 (CFS)
Effective area this stream = 70.13 (Ac.)
Total Study Area (Main Stream No. 1) = 70.13 (Ac.)
Area averaged Fm value = 0.077 (In/Hr)
Depth of flow = 0.573 (Ft.), Average velocity = 5.581 (Ft/s)

!!Warning: Water is above left or right bank elevations

Process from Point/Station 6.000 to Point/Station 7.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.699 (Ft.), Average velocity = 3.635 (Ft/s)

!!Warning: Water is above left or right bank elevations

******** Irregular Channel Data **********
Time of concentration = 25.54 min.
Depth of flow = 0.699(Ft.)
Average velocity = 3.635(Ft/s)
Total irregular channel flow = 154.024(CFS)
Irregular channel normal depth above invert elev. = 0.699(Ft.)
Average velocity of channel(s) = 3.635(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel.
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.5
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000
Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 2.364(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method) (Q=KClA) is C = 0.871
Subarea runoff = 8.543(CFS) for 6.760(Ac.)
Total runoff = 158.249(CFS)
Effective area this stream = 76.89(Ac.)
Total Study Area (Main Stream No. 1) = 76.89(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.706(Ft.), Average velocity = 3.659(Ft/s)
!!Warning: Water is above left or right bank elevations

++
Process from Point/Station 6.000 to Point/Station 7.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 76.890(Ac.)
Runoff from this stream = 158.249(CFS)
Time of concentration = 25.54 min.
Rainfall intensity = 2.364(In/Hr)
Area averaged loss rate (Fm) = 0.077(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:

<table>
<thead>
<tr>
<th>Stream Area</th>
<th>Flow rate (CFS)</th>
<th>TC (min)</th>
<th>Fm (In/Hr)</th>
<th>Rainfall Intensity (In/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>158.25</td>
<td>76.890</td>
<td>25.54</td>
<td>0.077</td>
</tr>
<tr>
<td>Qmax(1)</td>
<td>1.000 * 1.000 * 158.249)</td>
<td>158.249</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total of 1 streams to confluence:
Flow rates before confluence point:
158.249
Maximum flow rates at confluence using above data:
158.249
Area of streams before confluence:
76.890
Effective area values after confluence:
76.890
Results of confluence:
Total flow rate = 158.249(CFS)
Time of concentration = 25.541 min.
Effective stream area after confluence = 76.890(Ac.)
Study area average Pervious fraction(Ap) = 1.000
Study area average soil loss rate(Fm) = 0.077(In/Hr)
Study area total (this main stream) = 76.89(Ac.)
End of computations, Total Study Area = 76.89 (Ac.)
The following figures may be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 83.5
Routing Analysis for Basin "B"
Hydrograph Plot

Hyd. No. 1
RATIONAL HG

Hydrograph type = Manual
Storm frequency = 100 yrs

Peak discharge = 158.00 cfs
Time interval = 5 min

Hydrograph Volume = 327,750 cu ft

RATIONAL HG
Hyd. No. 1 -- 100 Yr

Q (cfs)

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00

0 25 50 75

Time (min)

Hyd No. 1
Hydrograph Plot

Hyd. No. 2
BASIN-B ROUTING HYDG

Hydrograph type = Reservoir
Storm frequency = 100 yrs
Inflow hyd. No. = 1
Reservoir name = DET BASIN-B

Peak discharge = 55.04 cfs
Time interval = 5 min
Max. Elevation = 3175.62 ft
Max. Storage = 212,277 cuft

Storage Indication method used.

Hydrograph Volume = 308,712 cuft

BASIN-B ROUTING HYDG

Q (cfs)

Q (cfs)

0.00 0.8 1.7 2.5 3.3 4.2 5.0 5.8 6.7 7.5

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00

Hyd No. 2
Hyd No. 1

Req. Stor = 212,277 cuft
Hyd. No. 2

BASIN-B ROUTING HYDG

Hydrograph type = Reservoir
Storm frequency = 100 yrs
Inflow hyd. No. = 1
Reservoir name = DET BASIN-B

Peak discharge = 55.04 cfs
Time interval = 5 min
Max. Elevation = 3175.62 ft
Max. Storage = 212,277 cuft

Storage Indication method used.

Hydrograph Volume = 308,712 cuft

BASIN-B ROUTING HYDG

Hyd. No. 2 – 100 Yr

Time (hrs)

Elev (ft)
Pond Report

Hydraflo Hydrographs by Intelisolve

Pond No. 1 - DET BASIN-B

Pond Data
Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

<table>
<thead>
<tr>
<th>Stage (ft)</th>
<th>Elevation (ft)</th>
<th>Contour area (sqft)</th>
<th>Incr. Storage (cuft)</th>
<th>Total storage (cuft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>3171.00</td>
<td>35,838</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>3172.00</td>
<td>40,122</td>
<td>37,980</td>
<td>37,980</td>
</tr>
<tr>
<td>2.00</td>
<td>3173.00</td>
<td>44,489</td>
<td>42,306</td>
<td>80,286</td>
</tr>
<tr>
<td>3.00</td>
<td>3174.00</td>
<td>48,921</td>
<td>46,705</td>
<td>126,991</td>
</tr>
<tr>
<td>4.00</td>
<td>3175.00</td>
<td>53,326</td>
<td>51,124</td>
<td>178,114</td>
</tr>
<tr>
<td>5.00</td>
<td>3176.00</td>
<td>57,789</td>
<td>55,558</td>
<td>233,672</td>
</tr>
<tr>
<td>6.00</td>
<td>3177.00</td>
<td>62,340</td>
<td>60,065</td>
<td>293,736</td>
</tr>
</tbody>
</table>

Culvert / Orifice Structures

<table>
<thead>
<tr>
<th>[A]</th>
<th>[B]</th>
<th>[C]</th>
<th>[D]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise (in)</td>
<td>36.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Span (in)</td>
<td>36.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>No. Barrels</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Invert El. (ft)</td>
<td>3171.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>2549.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Slope (%)</td>
<td>5.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>N-Value</td>
<td>.010</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Orif. Coeff.</td>
<td>.60</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Multi-Stage</td>
<td>n/a</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Weir Structures

<table>
<thead>
<tr>
<th>[A]</th>
<th>[B]</th>
<th>[C]</th>
<th>[D]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest Len (ft)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Crest El. (ft)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Weir Coeff.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Weir Type</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Multi-Stage</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Exfiltration = 0.000 in/hr (Contour) Tailwater Elev. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.
ITEM-1 Basin Routing Backup Data
For Basin-C
“Offsite-1+Onsite Area-1”, Pre Development Rational Method Analysis
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2004 Version 7.0
Rational Hydrology Study
Date: 03/08/11

PRE DEV OFFSITE-1+ONSITE AREA-1
TR 18255
Q100 1HR
RATIONAL METHOD

Program License Serial Number 4004

******** Hydrology Study Control Information ********

Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.300 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3

+++
Process from Point/Station 1.000 to Point/Station 2.000

**** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 3569.000(Ft.)
Bottom (of initial area) elevation = 3458.000(Ft.)
Difference in elevation = 111.000(Ft.)
Slope = 0.1100 s(%) = 11.10
TC = k(0.525)*(length^3)/(elevation change)^0.2
Initial area time of concentration = 12.915 min.
Rainfall intensity = 3.810(In/Hr) for a 100.0 year storm
Effective runoff coefficient for area (Q=KCI) is C = 0.882
Subarea runoff = 29.261(CFS)
Total initial stream area = 8.710(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.077(In/Hr)

+++
Process from Point/Station 2.000 to Point/Station 3.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.375(Ft.), Average velocity = 4.506(Ft/s)
!! Warning: Water is above left or right bank elevations

******* Irregular Channel Data *********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
 1 0.00 0.00
 2 395.00 5.00
 3 790.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 50.179(CFS)
 flow top width = 59.320(Ft.)
 velocity = 4.506(Ft/s)
 area = 11.136(Sq.Ft.)
 Froude number = 1.833
Upstream point elevation = 3458.000(Ft.)
Downstream point elevation = 3385.000(Ft.)
Flow length = 948.000(Ft.)
Travel time = 3.51 min.
Time of concentration = 16.42 min.
Depth of flow = 0.375(Ft.)
Average velocity = 4.506(Ft/s)
Total irregular channel flow = 50.179(CFS)
Irregular channel normal depth above invert elev. = 0.375(Ft.)
Average velocity of channel(s) = 4.506(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000
Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 3.220(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KClA) is C = 0.879
Subarea runoff = 41.772(CFS) for 16.400(Ac.)
Total runoff = 71.034(CFS)
Effective area this stream = 25.11(Ac.)
Total Study Area (Main Stream No. 1) = 25.11(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.428(Ft.), Average velocity = 4.915(Ft/s)
!!Warning: Water is above left or right bank elevations

Process from Point/Station 3.000 to Point/Station 4.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)

Depth of flow = 0.472(Ft.), Average velocity = 5.286(Ft/s)
!!Warning: Water is above left or right bank elevations

******** Irregular Channel Data *********

--
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 370.00 5.00
3 740.00 3.00
Manning's 'N' friction factor = 0.030
--
Sub-Channel flow = 87.302(CFS)
' ' flow top width = 69.918(Ft.)
' ' velocity= 5.286(Ft/s)
' ' area = 16.515(Sq.Ft)
' ' Froude number = 1.917
Upstream point elevation = 3385.000(Ft.)
Downstream point elevation = 3313.000(Ft.)
Flow length = 923.000(Ft.)
Travel time = 2.91 min.
Time of concentration = 19.33 min.
Depth of flow = 0.472(Ft.)
Average velocity = 5.286(Ft/s)
Total irregular channel flow = 87.302(CFS)
Irregular channel normal depth above invert elev. = 0.472(Ft.)
Average velocity of channel(s) = 5.286(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000
Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 2.873(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=Kcia) is C = 0.876
Subarea runoff = 32.480(CFS) for 16.030(Ac.)
Total runoff = 103.514(CFS)
Effective area this stream = 41.14(Ac.)
Total Study Area (Main Stream No. 1) = 41.14(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.504(Ft.), Average velocity = 5.516(Ft/s)
!!Warning: Water is above left or right bank elevations

+---+
| Process from Point/Station 4.000 to Point/Station 5.000 |
| **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** |
+---+

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.518(Ft.), Average velocity = 5.344(Ft/s)
!!Warning: Water is above left or right bank elevations

+---+
| Information entered for subchannel number 1 : |
| Point number 'X' coordinate 'Y' coordinate |
| 1 0.00 0.00 |
| 2 408.00 5.00 |
| 3 816.00 0.00 |
| Manning's 'N' friction factor = 0.030 |
| Sub-Channel flow = 117.000(CFS) |
| ' flow top width = 84.536(Ft.) |
| ' velocity = 5.344(Ft/s) |
| ' area = 21.895(Sq.Ft.) |
| ' Froude number = 1.850 |
| Upstream point elevation = 3313.000(Ft.) |
| Downstream point elevation = 3253.000(Ft.) |
| Flow length = 551.000(Ft.) |
| Travel time = 2.65 min. |
| Time of concentration = 21.99 min. |
| Depth of flow = 0.518(Ft.) |
| Average velocity = 5.344(Ft/s) |
| Total irregular channel flow = 116.999(CFS) |
| Irregular channel normal depth above invert elev. = 0.518(Ft.) |
| Average velocity of channel[s] = 5.344(Ft/s) |
| !!Warning: Water is above left or right bank elevations |
| Adding area flow to channel |
| UNDEVELOPED (poor cover) subarea |
| Decimal fraction soil group A = 0.000 |
| Decimal fraction soil group B = 0.500 |
| Decimal fraction soil group C = 0.000 |
| Decimal fraction soil group D = 0.500 |
| SCS curve number for soil(AMC 2) = 63.50 |
| Adjusted SCS curve number for AMC 3 = 96.10 |
| Pervious ratio(Ap) = 1.0000 |
| Max loss rate(Fm) = 0.077(In/Hr) |
| Rainfall intensity = 2.625(In/Hr) for a 100.0 year storm |
| Effective runoff coefficient used for area,(total area with modified rational method)(Q=Kcia) is C = 0.874 |
| Subarea runoff = 26.917(CFS) for 15.730(Ac.) |
| Total runoff = 130.430(CFS) |
| Effective area this stream = 56.87(Ac.) |
| Total Study Area (Main Stream No. 1) = 56.87(Ac.) |
| Area averaged Fm value = 0.077(In/Hr) |
| Depth of flow = 0.540(Ft.), Average velocity = 5.491(Ft/s) |
| !!Warning: Water is above left or right bank elevations |

+---+
| Process from Point/Station 5.000 to Point/Station 6.000 |
| **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** |
+---+

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.587(Ft.), Average velocity = 5.190(Ft/s)
!!Warning: Water is above left or right bank elevations
Irregular Channel Data

Information entered for subchannel number 1:

- Point number:
 1: 'X' coordinate = 0.00, 'Y' coordinate = 0.00
 2: 'X' coordinate = 395.00, 'Y' coordinate = 5.00
 3: 'X' coordinate = 790.00, 'Y' coordinate = 0.00

Manning's 'N' friction factor = 0.030

Sub-Channel flow = 141.463 (CFS)
 flow top width = 92.807 (Ft.)
 velocity = 5.190 (Ft/s)
 area = 27.257 (Sq.Ft.)
 Froude number = 1.688
Upstream point elevation = 3253.000 (Ft.)
Downstream point elevation = 3203.000 (Ft.)
Flow length = 889.000 (Ft.)
Travel time = 2.85 min.
Time of concentration = 24.84 min.
Depth of flow = 0.587 (Ft.)
Average velocity = 5.190 (Ft/s)
Total irregular channel flow = 141.463 (CFS)
Irregular channel normal depth above invert elev. = 0.587 (Ft.)
Average velocity of channel(s) = 5.190 (Ft/s)

!!Warning: Water is above left or right bank elevations
Adding area flow to channel

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000
Max loss rate (Fm) = 0.077 (In/Hr)
Rainfall intensity = 2.410 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) Q=RCIA) is C = 0.891
Subarea runoff = 22.006 (CFS) for 15.720 (Ac.)
Total runoff = 152.436 (CFS)
Effective area this stream = 72.59 (Ac.)
Total Study Area (Main Stream No. 1) = 72.59 (Ac.)
Area averaged Fm value = 0.077 (In/Hr)
Depth of flow = 0.604 (Ft.), Average velocity = 5.288 (Ft/s)

!!Warning: Water is above left or right bank elevations

++++++ ++ IRREGULAR CHANNEL FLOW TRAVEL TIME ++++

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.568 (Ft.), Average velocity = 5.311 (Ft/s)

!!Warning: Water is above left or right bank elevations

Information entered for subchannel number 1:

- Point number:
 1: 'X' coordinate = 0.00, 'Y' coordinate = 0.00
 2: 'X' coordinate = 477.00, 'Y' coordinate = 5.00
 3: 'X' coordinate = 394.00, 'Y' coordinate = 0.00

Manning's 'N' friction factor = 0.030

Sub-Channel flow = 163.464 (CFS)
 flow top width = 108.376 (Ft.)
 velocity = 5.311 (Ft/s)
 area = 30.779 (Sq.Ft.)
 Froude number = 1.756
Upstream point elevation = 3203.000 (Ft.)
Downstream point elevation = 3161.000 (Ft.)
Flow length = 682.000 (Ft.)
Travel time = 2.14 min.
Time of concentration = 26.98 min.
Depth of flow = 0.568(Ft.)
Average velocity = 5.311(Ft/s)
Total irregular channel flow = 163.463(CFS)
Irregular channel normal depth above invert elev. = 0.568(Ft.)
Average velocity of channel(s) = 5.311(Ft/s)

!!Warning: Water is above left or right bank elevations

Adding area flow to channel

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000
Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 2.275(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCI) is C = 0.870
Subarea runoff = 21.967(CFS) for 15.580(Ac.)
Total runoff = 174.402(CFS)
Effective area this stream = 88.17(Ac.)
Total Study Area (Main Stream No. 1) = 88.17(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.582(Ft.), Average velocity = 5.398(Ft/s)

!!Warning: Water is above left or right bank elevations

**
Process from Point/Station 7.000 to Point/Station 8.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.565(Ft.), Average velocity = 5.320(Ft/s)

!!Warning: Water is above left or right bank elevations

******* Irregular Channel Data **********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
 1 0.00 0.00
 2 539.00 5.00
 3 1078.00 0.00

Manning's 'N' friction factor = 0.030

Sub-Channel flow = 182.819(CFS)
 flow top width = 121.726(Ft.)
 velocity = 5.320(Ft/s)
 area = 34.363(Sq.Ft.)
 Froude number = 1.765
Upstream point elevation = 3161.000(Ft.)
Downstream point elevation = 3122.000(Ft.)
Flow length = 626.000(Ft.)
Travel time = 1.96 min.
Time of concentration = 28.94 min.
Depth of flow = 0.565(Ft.)
Average velocity = 5.320(Ft/s)
Total irregular channel flow = 182.818(CFS)
Irregular channel normal depth above invert elev. = 0.565(Ft.)
Average velocity of channel(s) = 5.320(Ft/s)

!!Warning: Water is above left or right bank elevations

Adding area flow to channel

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Adjusted SCS curve number for AMC 3 = 92.80
Pervious ratio(Ap) = 1.0000
Max loss rate(Fm) = 0.140(In/Hr)
Rainfall intensity = 2.166(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCI) is C = 0.864
Subarea runoff = 16.744(CFS) for 13.930(Ac.)
Total runoff = 191.146(CFS)
Effective area this stream = 102.10(Ac.)
Total Study Area (Main Stream No. 1) = 102.10(Ac.)
Area averaged Fm value = 0.085(In/Hr)
Depth of flow = 0.574(Ft.), Average velocity = 5.380(Ft/s)
!!Warning: Water is above left or right bank elevations

Process from Point/Station 8.000 to Point/Station 9.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.511(Ft.), Average velocity = 4.692(Ft/s)
!!Warning: Water is above left or right bank elevations

**** Irregular Channel Data ********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 815.00 5.00
3 1630.00 0.00
Manning’s 'N' friction factor = 0.030

Sub-Channel flow = 199.998(CFS)
 flow top width = 166.716(Ft.)
 velocity= 4.692(Ft/s)
 area = 42.629(Sq.Ft)
 Froude number = 1.635
Upstream point elevation = 3122.000(Ft.)
Downstream point elevation = 3100.000(Ft.)
Flow length = 398.000(Ft.)
Travel time = 1.41 min.
Time of concentration = 30.36 min.
Depth of flow = 0.511(Ft.)
Average velocity = 4.692(Ft/s)
Total irregular channel flow = 199.996(CFS)
Average velocity of channel(s) = 4.692(Ft/s)
!!Warning: Water is above left or right bank elevations

Adding area flow to channel

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Adjusted SCS curve number for AMC 3 = 92.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.140(In/Hr)
Rainfall intensity = 2.095(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCI =) is C = 0.861
Subarea runoff = 17.635(CFS) for 13.740(Ac.)
Total runoff = 208.781(CFS)
Effective area this stream = 115.84(Ac.)
Total Study Area (Main Stream No. 1) = 115.84(Ac.)
Area averaged Fm value = 0.092(In/Hr)
Depth of flow = 0.520(Ft.), Average velocity = 4.742(Ft/s)
!!Warning: Water is above left or right bank elevations

Process from Point/Station 9.000 to Point/Station 10.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.548(Ft.), Average velocity = 4.833(Ft/s)
!!Warning: Water is above left or right bank elevations

**** Irregular Channel Data ********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 216.967(CFS)
 flow top width = 163.898(Ft.)
 velocity = 4.833(Ft/s)
 area = 44.891(Sq.Ft)
 Froude number = 1.627

Upstream point elevation = 3100.000(Ft.)
Downstream point elevation = 3078.000(Ft.)
Flow length = 411.000(Ft.)
Travel time = 1.42 min.
Time of concentration = 31.77 min.
Depth of flow = 0.548(Ft.)
Average velocity = 4.833(Ft/s)
Total irregular channel flow = 216.966(CFS)
Irregular channel normal depth above invert elev. = 0.548(Ft.)
Average velocity of channel(s) = 4.833(Ft/s)
!!Warning: Water is above left or right bank elevations

Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Adjusted SCS curve number for AMC 3 = 92.80
PerVIOUS ratio(Ap) = 0.0000 Max loss rate(Fm) = 0.140(In/Hr)
Rainfall intensity = 2.029(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.857
Subarea runoff = 16.303(CFS) for 13.630(Ac.)
Total runoff = 225.084(CFS)
Effective area this stream = 129.47(Ac.)
Total Study Area (Main Stream No. 1) = 129.47(Ac.)
Area averaged Fm value = 0.097(In/Hr)
Depth of flow = 0.555(Ft.), Average velocity = 4.878(Ft/s)
!!Warning: Water is above left or right bank elevations

Process from Point/Station 10.000 to Point/Station 11.000
** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.585(Ft.), Average velocity = 5.523(Ft/s)
!!Warning: Water is above left or right bank elevations

******* Irregular Channel Data **********

Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
 1 0.00 0.00
 2 615.00 5.00
 3 1230.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 232.238(CFS)
 flow top width = 143.839(Ft.)
 velocity = 5.523(Ft/s)
 area = 42.052(Sq.Ft)
 Froude number = 1.800
Upstream point elevation = 3078.000(Ft.)
Downstream point elevation = 3055.000(Ft.)
Flow length = 359.000(Ft.)
Travel time = 1.08 min.
Time of concentration = 32.86 min.
Depth of flow = 0.585(Ft.)
Average velocity = 5.523(Ft/s)
Total irregular channel flow = 232.238(CFS)
Irregular channel normal depth above invert elev. = 0.585(Ft.)
Average velocity of channel(s) = 5.523(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Adjusted SCS curve number for AMC 3 = 92.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.140(In/Hr)
Rainfall intensity = 1.982(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.854
Subarea runoff = 14.256(CFS) for 11.910(Ac.)
Total runoff = 239.340(CFS)
Effective area this stream = 141.38(Ac.)
Total Study Area (Main Stream No. 1) = 141.38(Ac.)
Area averaged Fm value = 0.101(In/Hr)
Depth of flow = 0.591(Ft.), Average velocity = 5.564(Ft/s)
!!Warning: Water is above left or right bank elevations

++
Process from Point/Station 11.000 to Point/Station 12.000
***** IRREGULAR CHANNEL FLOW TRAVEL TIME *****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.691(Ft.), Average velocity = 5.949(Ft/s)
!!Warning: Water is above left or right bank elevations

Irregular Channel Data

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 428.00 5.00
3 856.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 243.240(CFS)
' ' flow top width = 118.316(Ft.)
' ' velocity = 5.949(Ft/s)
' ' area = 40.884(Sq.Ft)
' ' Froude number = 1.784
Upstream point elevation = 3055.000(Ft.)
Downstream point elevation = 3024.000(Ft.)
Flow length = 521.000(Ft.)
Travel time = 1.46 min.
Time of concentration = 34.32 min.
Depth of flow = 0.691(Ft.)
Average velocity = 5.949(Ft/s)
Total irregular channel flow = 243.239(CFS)
Irregular channel normal depth above invert elev. = 0.691(Ft.)
Average velocity of channel(s) = 5.949(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Adjusted SCS curve number for AMC 3 = 92.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.140(In/Hr)
Rainfall intensity = 1.922(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.852
Subarea runoff = 7.730(CFS) for 9.530(Ac.)
Total runoff = 247.071(CFS)
Effective area this stream = 150.91(Ac.)
Total Study Area (Main Stream No. 1) = 150.91(Ac.)
Area averaged Fm value = 0.103(In/Hr)
Depth of flow = 0.695(Ft.), Average velocity = 5.973(Ft/s)
Warning: Water is above left or right bank elevations

Process from Point/Station 11.000 to Point/Station 12.000

**** CONfluence OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 150.910(Ac.)
Runoff from this stream = 247.071(CFS)
Time of concentration = 34.32 min.
Rainfall intensity = 1.922(In/Hr)
Area averaged loss rate (Fm) = 0.103(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:

<table>
<thead>
<tr>
<th>Stream No.</th>
<th>Area (Ac.)</th>
<th>Flow rate (CFS)</th>
<th>TC (min)</th>
<th>Fm (In/Hr)</th>
<th>Rainfall Intensity (In/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>247.07</td>
<td>150.910</td>
<td>34.32</td>
<td>0.103</td>
<td>1.922</td>
</tr>
</tbody>
</table>

Qmax(1) = 1.000 * 1.000 * 247.071) + = 247.071

Total of 1 streams to confluence:
Flow rates before confluence point: 247.071
Maximum flow rates at confluence using above data: 247.071
Area of streams before confluence: 150.910
Effective area values after confluence: 150.910

Results of confluence:
Total flow rate = 247.071(CFS)
Time of concentration = 34.316 min.
Effective stream area after confluence = 150.910(Ac.)
Study area average Pervious fraction (Ap) = 1.000
Study area average soil loss rate (Fm) = 0.103(In/Hr)
Study area total (this main stream) = 150.91(Ac.)
End of computations, Total Study Area = 150.91 (Ac.)
The following figures may be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction (Ap) = 1.000
Area averaged SCS curve number = 81.2
“Onsite Area-1”, Post Development Rational Method Analysis
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2004 Version 7.0
Rational Hydrology Study Date: 03/08/11

POST DEB AREA-1, DEB-5 TO DEB-19
TR 18255
Q100 1 HR
RATIONAL METHOD

Program License Serial Number 4004

******** Hydrology Study Control Information *********

Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.250 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3

Process from Point/Station 10.000 to Point/Station 20.000

*** USER DEFINED FLOW INFORMATION AT A POINT ***

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 1.329(In/Hr) for a 100.0 year storm
User specified values are as follows:
TC = 55.00 min. Rain intensity = 1.33(In/Hr)
Total area this stream = 48.80(Ac.)
Total Study Area (Main Stream No. 1) = 48.80(Ac.)
Total runoff = 55.04(CFS)

Process from Point/Station 20.000 to Point/Station 30.000

*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 3171.000(Ft.)
End of street segment elevation = 3150.000(Ft.)
Length of street segment = 402.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 13.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hke from flowline = 1.500(In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street = 56.955(CFS)
Depth of flow = 0.450(Ft.), Average velocity = 9.044(Ft/s)
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 15.000(Ft.)
Flow velocity = 9.04(Ft/s)
Travel time = 0.74 min. TC = 55.74 min.
Adding area flow to street
RESIDENTIAL(3 = 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.00
Pervious ratio $(Ap) = 0.6000$ Max loss rate $(Fm) = 0.264$ (In/Hr)
Rainfall intensity = 1.316 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (total area with modified rational method) $(Q=KCIA)$ is $C = 0.837$
Subarea runoff = 3.651 (CFS) for 4.500 (Ac.)
Total runoff = 58.691 (CFS)
Effective area this stream = 53.30 (Ac.)
Total Study Area (Main Stream No. 1) = 53.30 (Ac.)
Area averaged Fm value = 0.093 (In/Hr)
Street flow at end of street = 58.691 (CFS)
Half street flow at end of street = 29.345 (CFS)
Depth of flow = 0.454 (Ft.), Average velocity = 9.153 (Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown) = 15.000 (Ft.)

++
Process from Point/Station 30.000 to Point/Station 40.000
*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 3150.000 (Ft.)
End of street segment elevation = 3121.000 (Ft.)
Length of street segment = 530.000 (Ft.)
Height of curb above gutter flowline = 6.0 (In.)
Width of half street (curb to crown) = 15.000 (Ft.)
Distance from crown to crossfall grade break = 13.500 (Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (2) sides of the street
Distance from curb to property line = 6.000 (Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500 (Ft.)
Gutter hike from flowline = 1.500 (In.)
Manning’s N in gutter = 0.0130
Manning’s N from gutter to grade break = 0.0130
Manning’s N from grade break to crown = 0.0130

Estimated mean flow rate at midpoint of street = 60.493 (CFS)
Depth of flow = 0.455 (Ft.), Average velocity = 9.394 (Ft/s)
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 15.000 (Ft.)
Flow velocity = 9.39 (Ft/s)
Travel time = 0.94 min. TC = 56.68 min.
Adding area flow to street
RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio $(Ap) = 0.6000$ Max loss rate $(Fm) = 0.264$ (In/Hr)
Rainfall intensity = 1.301 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (total area with modified rational method) $(Q=KCIA)$ is $C = 0.827$
Subarea runoff = 3.418 (CFS) for 4.450 (Ac.)
Total runoff = 62.108 (CFS)
Effective area this stream = 57.75 (Ac.)
Total Study Area (Main Stream No. 1) = 57.75 (Ac.)
Area averaged Fm value = 0.106 (In/Hr)
Street flow at end of street = 62.108 (CFS)
Half street flow at end of street = 31.054 (CFS)
Depth of flow = 0.458 (Ft.), Average velocity = 9.492 (Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown) = 15.000 (Ft.)

++
Process from Point/Station 40.000 to Point/Station 45.000
*** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 57.750 (Ac.)
Runoff from this stream = 62.108 (CFS)
Time of concentration = 56.68 min.
Rainfall intensity = 1.301 (In/Hr)
Area averaged loss rate $(Fm) = 0.1058$ (In/Hr)
Area averaged Pervious ratio $(Ap) = 0.9380$
Summary of stream data:

<table>
<thead>
<tr>
<th>Stream Area Flow rate</th>
<th>TC</th>
<th>Fm</th>
<th>Rainfall Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(Ac.)</td>
<td>(CFS)</td>
<td>(min)</td>
</tr>
<tr>
<td>1</td>
<td>62.11</td>
<td>57.750</td>
<td>56.68</td>
</tr>
<tr>
<td>Qmax(1) =</td>
<td>1.000 *</td>
<td>1.000 *</td>
<td>62.108</td>
</tr>
</tbody>
</table>

Total of 1 streams to confluence:
Flow rates before confluence point: 62.108
Maximum flow rates at confluence using above data: 62.108
Area of streams before confluence: 57.750
Effective area values after confluence: 57.750
Results of confluence:
Total flow rate = 62.108(CFS)
Time of concentration = 56.681 min.
Effective stream area after confluence = 57.750(Ac.)
Study area average Pervious fraction(Ap) = 0.938
Study area average soil loss rate(Fm) = 0.106(In/Hr)
Study area total (this main stream) = 57.750(Ac.)

+---+
+-initial area evaluation-*

RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio(Ap) = 0.6000
Max loss rate(Fm) = 0.264(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 3203.000(Ft.)
Bottom (of initial area) elevation = 3139.000(Ft.)
Difference in elevation = 64.000(Ft.)
Slope = 0.064000 s(%) = 6.40
TC = k(0.412)[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 11.315 min.
Rainfall intensity = 4.018(In/Intesity) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.841
Subarea runoff = 23.045(CFS)
Total initial stream area = 6.820(Ac.)
Pervious area fraction = 0.600
Initial area Fm value = 0.264(In/Hr)

+---+
+process from point/station-*

Process from Point/Station 50.000 to Point/Station 60.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 3139.000(Ft.)
End of street segment elevation = 3124.000(Ft.)
Length of street segment = 434.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 13.500(Ft.)
Slope from gutter to grade break (v/Hz) = 0.093
Slope from grade break to crown (v/Hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000(Ft.)
Slope from curb to property line (v/Hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street = 34.274(CFS)
Depth of flow = 0.415(Ft.), Average velocity = 6.527(Ft/s)
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 15,000(Ft.)
Flow velocity = 6.53(Ft/s)
Travel time = 1.11 min. TC = 12.42 min.
Adding area flow to street
RESIDENTIAL(3 - 4 dwl/acre)
Decimial fraction soil group A = 0.000
Decimial fraction soil group B = 1.000
Decimial fraction soil group C = 0.000
Decimial fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio(Ap) = 0.6000
Max loss rate(Fm)= 0.264(In/Hr)
Rainfall intensity = 3.764(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=RCIA) is C = 0.837
Subarea runoff = 22.347(CFS) for 7.590(Ac.)
Total runoff = 45.392(CFS)
Effective area this stream = 14.41(Ac.)
Total Study Area (Main Stream No. 1) = 72.16(Ac.)
Area averaged Fm value = 0.264(In/Hr)
Street flow at end of street = 45.392(CFS)
Half street flow at end of street = 22.696(CFS)
Depth of flow = 0.448(Ft.), Average velocity = 7.297(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown) = 15.000(Ft.)

Process from Point/Station 70,000 to Point/Station 80,000
**** STREET INLET + AREA + PIPE TRAVEL TIME ****

<table>
<thead>
<tr>
<th>Top of street segment elevation</th>
<th>3124.000(Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of street segment elevation</td>
<td>3121.000(Ft.)</td>
</tr>
<tr>
<td>Length of street segment</td>
<td>439.000(Ft.)</td>
</tr>
<tr>
<td>Height of curb above gutter flowline</td>
<td>6.0(In.)</td>
</tr>
<tr>
<td>Width of half street (curb to crown)</td>
<td>15.000(Ft.)</td>
</tr>
<tr>
<td>Distance from crown to crossfall grade break</td>
<td>13.500(Ft.)</td>
</tr>
<tr>
<td>Slope from gutter to grade break (v/Hz)</td>
<td>0.083</td>
</tr>
<tr>
<td>Slope from grade break to crown (v/Hz)</td>
<td>0.020</td>
</tr>
<tr>
<td>Street flow is on [2] side(s) of the street</td>
<td></td>
</tr>
<tr>
<td>Discharge from curb to property line</td>
<td>6.000(Ft.)</td>
</tr>
<tr>
<td>Slope from curb to property line (v/Hz)</td>
<td>0.020</td>
</tr>
<tr>
<td>Gutter width</td>
<td>1.500(Ft.)</td>
</tr>
<tr>
<td>Gutter rise from flowline</td>
<td>1.500(In.)</td>
</tr>
<tr>
<td>Manning's N in gutter</td>
<td>0.0130</td>
</tr>
<tr>
<td>Manning's N from gutter to grade break</td>
<td>0.0130</td>
</tr>
<tr>
<td>Manning's N from grade break to crown</td>
<td>0.0130</td>
</tr>
</tbody>
</table>

Street Inlet Calculations:
Street flow before street inlet = 45.392(CFS)
Half street flow before street inlet = 22.696(CFS)
Existing pipe flow before street inlet = 0.000(CFS)
Number of street inlets = 2
Depth of flow = 0.761(Ft.), Average velocity = 4.016(Ft/s)
U.S. DOT Hydraulic Engineering Circular No. 12 curb inlet calculations:
Street flow half width at start of inlet = 15.000(Ft.)
Flow rate in gutter section of street = Qw = 3.113(CFS)
Ratio of frontal flow to total flow = R0 = 0.1372
Given curb inlet length L = 4.000(Ft.)

Half street cross section data points at curb inlet:
<table>
<thead>
<tr>
<th>X-coordinate (Ft.)</th>
<th>Y-coordinate (Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.7867 right of way</td>
</tr>
<tr>
<td>6.0000</td>
<td>0.6667 top of curb</td>
</tr>
<tr>
<td>6.0000</td>
<td>0.0000 flow line</td>
</tr>
<tr>
<td>7.5000</td>
<td>0.2917 gutter/depression end</td>
</tr>
<tr>
<td>7.5000</td>
<td>0.2917 grade break</td>
</tr>
<tr>
<td>21.0000</td>
<td>0.5617 crown</td>
</tr>
</tbody>
</table>

Length required for total flow interception = Lt
Lt = 0.6 * 0.42 * Slope^0.3 * (1/(n*Se))^-0.6 = 27.184(Ft.)
where Manning's n = 0.0130 and Slope = street slope = 0.0068
Se = Equivalent Street x-slope including depression = 0.0982
Gutter depression depth = 2.000(In.)
Gutter depression width = 1.500(Ft.)
Efficiency = 1 - (1-L/Lt)^1.8 = 0.2491
Pipe calculations for under street flow rate of 11.308(CFS)
Using a pipe slope = 0.714 %
Upstream point/station elevation = 3124.000(Ft.)
Downstream point/station elevation = 3121.000(Ft.)
Pipe length = 439.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 11.308(CFS)
Normalized computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 11.308(CFS)
Normal flow depth in pipe = 14.79(In.)
Flow top width inside pipe = 19.17(In.)
Critical Depth = 15.04(In.)
Pipe flow velocity = 6.24(Ft/s)
Travel time through pipe = 1.17 min.
Time of concentration (TC) = 13.60 min.
Maximum flow rate of street inlet(s) = 11.308(CFS)
Maximum pipe flow capacity = 11.308(CFS)
Remaining flow in street below inlet = 34.084(CFS)
Adding area flow to street
RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm) = 0.264(In/Hr)
Rainfall intensity = 3.534(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method) (Q=KCIA) is C = 0.833
Subarea runoff = 5.989(CFS) for 3.050(Ac.)
Total runoff = 51.381(CFS)
Effective area this stream = 17.46(Ac.)
Total Study Area (Main Stream No. 1) = 75.21(Ac.)
Area averaged Fm value = 0.264(In/Hr)
Street flow at end of street = 40.074(CFS)
Half street flow at end of street = 20.037(CFS)
Depth of flow = 0.572(Ft.), Average velocity = 3.921(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 3.61(Ft.)
Flow width (from curb towards crown) = 15.000(Ft.)

+--+
| Process from Point/Station 80.000 to Point/Station 85.000 |
+--+
| **** CONFLUENCE OF MINOR STREAMS **** |
+--+

Along Main Stream number: 1 in normal stream number 2
Stream flow area = 17.460(Ac.)
Runoff from this stream = 51.381(CFS)
Time of concentration = 13.60 min.
Rainfall intensity = 3.534(In/Hr)
Area averaged loss rate (Fm) = 0.2640(In/Hr)
Area averaged Pervious ratio (Ap) = 0.6000
Summary of stream data:

<table>
<thead>
<tr>
<th>Stream No.</th>
<th>Area (Ac.)</th>
<th>Flow rate (CFS)</th>
<th>TC (min)</th>
<th>Fm (In/Hr)</th>
<th>Rainfall Intensity (In/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62.11</td>
<td>57.750</td>
<td>56.68</td>
<td>0.106</td>
<td>1.301</td>
</tr>
<tr>
<td>2</td>
<td>51.38</td>
<td>17.460</td>
<td>13.60</td>
<td>0.264</td>
<td>3.534</td>
</tr>
</tbody>
</table>

Qmax(1) =
1.000 * 1.000 * 62.108 + 0.317 * 1.000 * 51.381 = 78.401
Qmax(2) =
2.869 * 0.240 * 62.108 + 1.000 * 1.000 * 51.381 = 94.117

Total of 2 streams to confluence:
Flow rates before confluence point:
62.108 51.381
Maximum flow rates at confluence using above data:
78.401 94.117
Area of streams before confluence:
57.750 17.460
Effective area values after confluence:

75.210
31.312

Results of confluence:
Total flow rate = 94.117(CFS)
Time of concentration = 13.596 min.
Effective stream area after confluence = 31.312(Ac.)
Study area average Pervious fraction(Ap) = 0.860
Study area average soil loss rate(fm) = 0.143(In/Hr)
Study area total (this main stream) = 75.21(Ac.)

Process from Point/Station 90.000 to Point/Station 100.000
*** STREET INLET + AREA + PIPE TRAVEL TIME ***

Top of street segment elevation = 3121.000(Ft.)
End of street segment elevation = 3096.000(Ft.)
Length of street segment = 459.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 13.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130

Street Inlet Calculations:
Street flow before street inlet = 82.809(CFS)
Half street flow before street inlet = 41.404(CFS)
Existing pipe flow before street inlet = 11.308(CFS)
Number of street inlets = 2
Depth of flow = 0.669(Ft.), Average velocity = 10.574(Ft/s)
U.S. DOT Hydraulic Engineering Circular No. 12 curb inlet calculations:
Street flow half width at start of inlet = 15.000(Ft.)
Flow rate in gutter section of street = Qw = 10.107(CFS)
Ratio of frontal flow to total flow = E0 = 0.2441
Given curb inlet length L = 14.000(Ft.)

Half street cross section data points at curb inlet:
X-coordinate (Ft.) Y-coordinate (Ft.)
0.0000 0.7867 right of way
6.0000 0.6667 top of curb
6.0000 0.0000 flow line
7.5000 0.2917 gutter/depression end
7.5000 0.2917 grade break
21.0000 0.5617 crown

Length required for total flow interception = Lt
Lt = Qw * 0.42 * Slope^0.3 = (1/2^n)*0.5 = 60.906(Ft.)
where Manning's n = 0.0130 and Slope = street slope = 0.0545
Se = Equivalent Street x-slope including depression = 0.1101
Gutter depression depth = 2.000(In.)
Gutter depression width = 1.500(Ft.)
Efficiency = 1 - (1-L/Lt)^1.8 = 0.3751

Pipe calculations for under street flow rate of 42.368(CFS)
Using a pipe slope = 5.155 %
Upstream point/station elevation = 3121.000(Ft.)
Downstream point/station elevation = 3096.000(Ft.)
Pipe length = 459.000(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 42.368(CFS)
Nearest computed pipe diameter = 24.00(In.)
Calculated individual pipe flow = 42.368(CFS)
Normal flow depth in pipe = 16.62(In.)
Flow top width inside pipe = 22.15(In.)
Critical depth could not be calculated.
Pipe flow velocity = 18.26(Ft/s)
Travel time through pipe = 0.42 min.
Time of concentration (TC) = 14.01 min.
Maximum flow rate of street inlet(s) = 31.060(CFS)
Maximum pipe flow capacity = 42.368(CFS)
Remaining flow in street below inlet = 51.749(CFS)
Adding area flow to street

RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = 0.264 (In/Hr)
Rainfall intensity = 3.459 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q = K.CIA) is C = 0.859
Subarea runoff = 13.191 (CFS) for 4.810 (Ac.)
Total runoff = 107.308 (CFS)
Effective area this stream = 36.12 (Ac.)
Total Study Area (Main Stream No. 1) = 80.02 (Ac.)
Area averaged Fm value = 0.159 (In/Hr)
Street flow at end of street = 64.939 (CFS)
Half street flow at end of street = 32.470 (CFS)
Depth of flow = 0.465 (Ft), Average velocity = 9.648 (Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown) = 15.000 (Ft.)

++
Process from Point/Station 100.000 to Point/Station 110.000
**** STREET INLET + AREA + PIPE TRAVEL TIME ****

Top of street segment elevation = 3096.000 (Ft.)
End of street segment elevation = 3075.000 (Ft.)
Length of street segment = 374.000 (Ft.)
Height of street segment = 6.0 (In.)
Width of half street (curb to crown) = 15.000 (Ft.)
Distance from crown to crossfall grade break = 13.500 (Ft.)
Slope from gutter to grade break (v/ft) = 0.083
Slope from grade break to crown (v/ft) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000 (Ft.)
Slope from curb to property line (v/ft) = 0.020
Gutter width = 1.500 (Ft.)
Gutter hike from flowline = 1.500 (In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130

Street Inlet Calculations:
Street flow before street inlet = 64.939 (CFS)
Half street flow before street inlet = 32.470 (CFS)
Existing pipe flow before street inlet = 42.360 (CFS)
Number of street inlets = 2
Depth of flow = 0.622 (Ft.), Average velocity = 9.692 (Ft/s)
U.S. DOT Hydraulic Engineering Circular No. 12 curb inlet calculations:
Street flow half width at start of inlet = 15.000 (Ft.)
Flow rate in gutter section of street = QW = 9.045 (CFS)
Ratio of frontal flow to total flow = RO = 0.2786
Given curb inlet length L = 14.000 (Ft.)

Half street cross section data points at curb inlet:
X-coordinate (Ft.) Y-coordinate (Ft.)
0.0000 0.7867 right of way
6.0000 0.6667 top of curb
6.0000 0.0000 flow line
7.5000 0.2917 gutter/depression end
7.5000 0.2917 grade break
21.0000 0.5617 crown

Length required for total flow interception = Lt
Lt = 0.6 * Q^0.42 * Slope^-3 * (L/n^3)^0.6 = 54.372 (Ft.)
where Manning's n = 0.0130 and Slope = street slope = 0.0561
Se = Equivalent Street x-slope including depression = 0.1140
Gutter depression depth = 2.000 (In.)
Gutter depression width = 1.500 (Ft.)
Efficiency = 1 - (1-L/Lt)^1.8 = 0.4148

Pipe calculations for under street flow rate of 69.308 (CFS)
Using a pipe slope = 5.585 %
Upstream point/station elevation = 3096.000 (Ft.)
Downstream point/station elevation = 3075.000 (Ft.)
Pipe length = 374.00(Ft.) Manning’s N = 0.013
No. of pipes = 1 Required pipe flow = 69.308(CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 69.308(CFS)
Normal flow depth in pipe = 20.95(In.)
Flow top width inside pipe = 22.51(In.)
Critical depth could not be calculated.
Pipe flow velocity = 20.94(Ft/s)
Travel time through pipe = 0.30 min.
Time of concentration (TC) = 14.31 min.
Maximum flow rate of street inlet(s) = 26.940(CFS)
Maximum pipe flow capacity = 69.308(CFS)
Remaining flow in street below inlet = 38.000(CFS)
Adding area flow to street RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = 0.264(In/Hr)
Rainfall intensity = 3.409(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified ratio is) Q=KCIA)
Subarea runoff = 11.576(CFS) for 4.670(Ac.)
Total runoff = 118.884(CFS)
Effective area this stream = 40.79(Ac.)
Total Study Area (Main Stream No. 1) = 84.69(Ac.)
Area averaged Fm value = 0.171(In/Hr)
Street flow at end of street = 49.576(CFS)
Half street flow at end of street = 24.788(CFS)
Depth of flow = 0.429(Ft.), Average velocity = 8.748(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown) = 15.000(Ft.)

**
Process from Point/Station 110.000 to Point/Station 120.000

**** STREET INLET + AREA + PIPE TRAVEL TIME ****

Top of street segment elevation = 3075.000(Ft.)
End of street segment elevation = 3052.000(Ft.)
Length of street segment = 417.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 13.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130

Street Inlet Calculations:
Street flow before street inlet = 49.576(CFS)
Half street flow before street inlet = 24.788(CFS)
Existing pipe flow before street inlet = 69.308(CFS)
Number of street inlets = 2
Depth of flow = 0.589(Ft.), Average velocity = 8.660(Ft/s)
U.S. DOT Hydraulic Engineering Circular No. 12 curb inlet calculations:
Street flow half width at start of inlet = 15.000(Ft.)
Flow rate in gutter section of street = Qw = 7.922(CFS)
Ratio of frontal flow to total flow = E0 = 0.3196
Given curb inlet length L = 21.000(Ft.)

Half street cross section data points at curb inlet:
X-coordinate (Ft.) Y-coordinate (Ft.)
0.0000 0.7867 right of way
6.0000 0.6667 top of curb
6.0000 0.0000 flow line
7.5000 0.2917 gutter/depression end
7.5000 0.2917 grade break
Length required for total flow interception = \(L_t \)
\[
L_t = 0.6 \times Q^{0.42} \times \text{Slope}^{0.3} \times (1/n^*Se)^{-0.6} = 47.161 \text{ (Ft.)}
\]
where Manning's \(n = 0.0130 \) and \(\text{Slope} = \text{street slope} = 0.0552 \)
\(Se = \text{Equivalent Street x-slope including depression} = 0.1185 \)
Gutter depression depth = 2.000\((\text{In.}) \)
Gutter depression width = 1.500\((\text{Ft.}) \)
Efficiency = \(1 - (1-L/Lt)^{1.8} = 0.6538 \)

Pipe calculations for under street flow rate of 101.720\((\text{CFS}) \)
Using a pipe slope = 6.047 \%
Upstream point/station elevation = 3075.000\((\text{Ft.}) \)
Downstream point/station elevation = 3052.000\((\text{Ft.}) \)
Pipe length = 417.00\((\text{Ft.}) \) Manning's \(N = 0.013 \)
No. of pipes = 1 Required pipe flow = 101.720\((\text{CFS}) \)
Nearest computed pipe diameter = 33.00\((\text{In.}) \)
Calculated individual pipe flow = 101.720\((\text{CFS}) \)
Normal flow depth in pipe = 21.96\((\text{In.}) \)
Flow top width inside pipe = 31.14\((\text{In.}) \)
Critical depth could not be calculated.
Pipe flow velocity = 24.22\((\text{Ft/s}) \)
Travel time through pipe = 0.29 \text{ min.}
Time of concentration (TC) = 14.60 \text{ min.}
Maximum flow rate of street inlet(s) = 32.412\((\text{CFS}) \)
Maximum pipe flow capacity = 101.720\((\text{CFS}) \)
Remaining flow in street below inlet = 17.163\((\text{CFS}) \)
Adding area flow to street
RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio\((Ap) = 0.6000 \)
Max loss rate\((Fm) = 0.264 \text{ (In/Hr)} \)
Rainfall intensity\((I) = 3.362 \text{ (In/Hr)} \) for a 100.0 year storm
Effective runoff coefficient used for area,\((total \text{ area with modified rational method}) = 0.852 \)
Subarea runoff = 7.195\((\text{CFS}) \)

Total runoff = 126.079\((\text{CFS}) \)
Effective area this stream = 43.99\((\text{Ac.}) \)
Total study area (Main Stream No. 11 = 87.89\((\text{Ac.}) \)
Area averaged \(Fm \) value = 0.178\((\text{In/Hr}) \)

Street flow at end of street = 24.359\((\text{CFS}) \)
Half street flow at end of street = 12.179\((\text{CFS}) \)
Depth of flow = 0.354\((\text{Ft.}) \), Average velocity = 6.944\((\text{Ft/s}) \)

Flow width \((\text{from curb towards crown}) = 12.972 \text{ (Ft.)} \)

Process from Point/Station 120.000 to Point/Station 130.000

PIPEFLOW TRAVEL TIME (Program estimated size)

Upstream point/station elevation = 3046.000\((\text{Ft.}) \)
Downstream point/station elevation = 3020.000\((\text{Ft.}) \)
Pipe length = 248.00\((\text{Ft.}) \) Manning's \(N = 0.013 \)
No. of pipes = 1 Required pipe flow = 126.079\((\text{CFS}) \)
Nearest computed pipe diameter = 30.00\((\text{In.}) \)
Calculated individual pipe flow = 126.079\((\text{CFS}) \)
Normal flow depth in pipe = 23.34\((\text{In.}) \)
Flow top width inside pipe = 24.93\((\text{In.}) \)
Critical depth could not be calculated.
Pipe flow velocity = 30.79\((\text{Ft/s}) \)
Travel time through pipe = 0.13 \text{ min.}
Time of concentration (TC) = 14.73 \text{ min.}

Process from Point/Station 130.000 to Point/Station 135.000

CONfluence of Minor Streams

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 43.992\((\text{Ac.}) \)
Runoff from this stream = 126.079\((\text{CFS}) \)
Time of concentration = 14.73 \text{ min.}
Rainfall intensity = 3.340\((\text{In/Hr}) \)
Area averaged loss rate \((Fm) = 0.1775 \text{ (In/Hr)} \)
Area averaged Pervious ratio \((Ap) = 0.7847 \)
Summary of stream data:

<table>
<thead>
<tr>
<th>Stream No.</th>
<th>Area (Ac.)</th>
<th>Flow rate (CFS)</th>
<th>TC (min)</th>
<th>Fm (In/Hr)</th>
<th>Rainfall Intensity (In/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>126.08</td>
<td>43.992</td>
<td>14.73</td>
<td>0.178</td>
<td>3.340</td>
</tr>
<tr>
<td>Qmax(1)</td>
<td></td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>126.079 + 126.079 = 252.158</td>
</tr>
</tbody>
</table>

Total of 1 streams to confluence:
Flow rates before confluence point: 126.079
Maximum flow rates at confluence using above data: 126.079
Area of streams before confluence: 43.992
Effective area values after confluence: 43.992

Results of confluence:
Total flow rate = 126.079(CFS)
Time of concentration = 14.733 min.
Effective stream area after confluence = 43.992(Ac.)
Study area average Pervious fraction (Ap) = 0.785
Study area average soil loss rate (Fm) = 0.178(In/Hr)
Study area total (this main stream) = 43.992(Ac.)

+---+
| Process from Point/Station 200.000 to Point/Station 210.000 |
| *** INITIAL AREA EVALUATION *** |
+---+

RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = 0.264(In/Hr)
Initial subarea data:
Initial area flow distance = 600.000(Ft.)
Top (of initial area) elevation = 3124.000(Ft.)
Bottom (of initial area) elevation = 3111.000(Ft.)
Difference in elevation = 13.000(Ft.)
Slope = 0.02167 m = 2.17
TC = k(0.412) * [(length)'3'] / (elevation change)']^0.2
Initial area time of concentration = 11.455 min.
Rainfall intensity = 3.984(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q = KxI) is C = 0.840
Subarea runoff = 11.919(CFS)
Total initial stream area = 3.560(Ac.)
Pervious area fraction = 0.600
Initial area Fm value = 0.264(In/Hr)

+---+
| Process from Point/Station 210.000 to Point/Station 220.000 |
| *** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *** |
+---+

Top of street segment elevation = 3111.000(Ft.)
End of street segment elevation = 3104.000(Ft.)
Length of street segment = 242.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 13.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street = 18.813(CFS)
Depth of flow = 0.361(Ft.), Average velocity = 5.108(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 13.305(Ft.)
Flow velocity = 5.11(Ft/s)
Travel time = 0.79 min. TC = 12.24 min.
Adding area flow to street
RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.600
Max loss rate (Fm) = 0.264(In/Hr)
Rainfall intensity = 3.802(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCI A) is C = 0.838
Subarea runoff = 13.621(CFS) for 4.460(Ac.)
Total runoff = 25.540(CFS)
Effective area this stream = 8.02(Ac.)
Total Study Area (Main Stream No. 1) = 95.91(Ac.)
Area averaged Fm value = 0.264(In/Hr)
Street flow at end of street = 25.540(CFS)
Half street flow at end of street = 12.770(CFS)
Depth of flow = 0.395(Ft.), Average velocity = 5.504(Ft/s)
Flow width (from curb towards crown) = 14.996(Ft.)

++
Process from Point/Station 220.000 to Point/Station 230.000
**** STREET INLET + AREA + PIPE TRAVEL TIME ****

Top of ofstreet segment elevation = 3104.000(Ft.)
End of street segment elevation = 3073.000(Ft.)
Length of street segment = 550.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 13.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 1.500(In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130

Street Inlet Calculations:
Street flow before street inlet = 25.540(CFS)
Half street flow before street inlet = 12.770(CFS)
Existing pipe flow before street inlet = 0.000(CFS)
Number of street inlets = 2
Depth of offlow = 0.514(Ft.), Average velocity = 7.165(Ft/s)
U.S. DOT Hydraulic Engineering Circular No. 12 curb inlet calculations:
Street flow half width at start of inlet = 12.594(Ft.)
Flow rate in gutter section of street = Qw = 5.720(CFS)
Ratio of frontal flow to total flow = E0 = 0.4479
Given curb inlet length = 7.000(Ft.)

Half street cross section data points at curb inlet:
X-coordinate (Ft.) Y-coordinate (Ft.)
0.0000 0.7867 right of way
6.0000 0.6667 top of curb
6.0000 0.0000 flow line
7.5000 0.2917 gutter/depression end
7.5000 0.2917 grade break
21.0000 0.5617 crown

Length required for total flow interception = L
L = .6 * Qo * .42 * Slope: .3 * (1/n*Se): .6 = 33.560(Ft.)
where Manning's n = 0.0130 and Slope = street slope = 0.0564
Se = Equivalent Street x-slope including depression = 0.1328
Gutter depression depth = 2.000(In.)
Gutter depression width = 1.500(Ft.)
Efficiency = 1 - (1-L/Lt)^1.8 = 0.3437

Pipe calculations for under street flow rate of 8.777(CFS)
Using a pipe slope 5.818 %
Upstream point/station elevation 3104.000(Ft.)
Downstream point/station elevation 3073.000(Ft.)
Pipe length 550.00(Ft.) Manning's N 0.013
No. of pipes 1 Required pipe flow 8.777(CFS)
Nearest computed pipe diameter 15.00(In.)
Calculated individual pipe flow 8.777(CFS)
Normal flow depth in pipe 8.05(In.)
Flow top width inside pipe 14.96(In.)
Critical Depth 13.77(In.)
Pipe flow velocity 13.07(Ft/s)
Travel time through pipe 0.70 min.
Time of concentration (TC) 12.95 min.
Maximum flow rate of street inlet(s) 8.777(CFS)
Maximum pipe flow capacity 8.777(CFS)
Remaining flow in street below inlet 16.763(CFS)

Adding area flow to street

RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.000
SCS curve number for soil(AMC 2) 56.00
Adjusted SCS curve number for AMC 3 75.80
Pervious ratio(Ap) 0.6000
Max loss rate(Fm)= 0.264(In/Hr)
Rainfall intensity 3.657(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=K CIA) is C 0.835
Subarea runoff 18.067(CFS) for 6.260(Ac.)
Total runoff 43.607(CFS)

Effective area this stream 14.28(Ac.)
Total Study Area (Main Stream No. 1) 102.17(Ac.)
Area averaged Fm value 0.264(In/Hr)
Street flow at end of street 34.830(CFS)
Half street flow at end of street 17.415(CFS)
Depth of flow 0.392(Ft.), Average velocity 7.640(Ft/s)
Flow width (from curb towards crown) 14.860(Ft.)

==

Process from Point/Station 230.000 to Point/Station 230.000
==

**** SUBAREA FLOW ADDITION ****

RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A 0.000
Decimal fraction soil group B 1.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 0.000
SCS curve number for soil(AMC 2) 56.00
Adjusted SCS curve number for AMC 3 75.80
Pervious ratio(Ap) 0.6000
Max loss rate(Fm)= 0.264(In/Hr)

Time of concentration 12.95 min.
Rainfall intensity 3.657(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=K CIA) is C 0.835
Subarea runoff 10.138(CFS) for 3.320(Ac.)
Total runoff 53.745(CFS)

Effective area this stream 17.60(Ac.)
Total Study Area (Main Stream No. 1) 105.49(Ac.)
Area averaged Fm value 0.264(In/Hr)

==

Process from Point/Station 230.000 to Point/Station 240.000
==

**** STREET INLET + AREA + PIPE TRAVEL TIME ****

Top of street segment elevation 3073.000(Ft.)
End of street segment elevation 3041.000(Ft.)
Length of street segment 596.000(Ft.)
Height of curb above gutter flowline 6.0(In.)
Width of half street (curb to crown) 15.000(Ft.)
Distance from crown to crossfall grade break 13.500(Ft.)
Slope from gutter to grade break (v/Hz) 0.083
Slope from grade break to crown (v/Hz) 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line 6.000(Ft.)
Slope from curb to property line (v/Hz) 0.020
Gutter width 1.500(Ft.)
Gutter hike from flowline = 1.500(Ft.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130

Street Inlet Calculations:
Street flow before street inlet = 44.968 (CFS)
Half street flow before street inlet = 22.484 (CFS)
Existing pipe flow before street inlet = 8.777 (CFS)
Number of street inlets = 2
Depth of flow = 0.580 (Ft.), Average velocity = 8.264 (Ft/s)
U.S. DOT Hydraulic Engineering Circular No. 12 curb inlet calculations:
Street flow half width at start of inlet = 15,000 (Ft.)
Flow rate in gutter section of street = Qw = 7.516 (CFS)
Ratio of frontal flow to total flow = E0 = 0.3343
Given curb inlet length L = 14,000 (Ft.)

Half street cross section data points at curb inlet:
X-coordinate (Ft.) Y-coordinate (Ft.)
0.0000 - 0.7867 right of way
6.0000 - 0.6667 top of curb
6.0000 - 0.0000 flow line
7.5000 - 0.2917 gutter depression end
7.5000 - 0.2917 grade break
21.0000 - 0.5617 crown
Length required for total flow interception = Lt
Lt = 0.6 * 0.42 * Slope^3 * (1/(n*Se)^0.6 = 44.538 (Ft.)
where Manning's n = 0.0130 and Slope = street slope = 0.0537
Se = Equivalent Street x-slope including depression = 0.1201
Gutter depression depth = 2.000 (In.)
Gutter depression width = 1.500 (Ft.)
Efficiency = 1 - (1-L/Lt)^1.8 = 0.4930

Pipe calculations for under street flow rate of 30.947 (CFS)
Using a pipe slope = 5.307 %
Upstream point/station elevation = 3073.000 (Ft.)
Downstream point/station elevation = 3041.000 (Ft.)
Pipe length = 596.00 (Ft.)
Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 30.947 (CFS)
Nearest computed pipe diameter = 21.00 (In.)
Calculated individual pipe flow = 30.947 (CFS)
Normal flow depth in pipe = 14.84 (In.)
Flow top width inside pipe = 19.13 (In.)
Critical depth could not be calculated.
Pipe flow velocity = 17.03 (Ft/s)
Travel time through pipe = 0.58 min.
Time of concentration (TC) = 13.53 min.
Maximum flow rate of street inlet(s) = 22.170 (CFS)
Maximum pipe flow capacity = 30.947 (CFS)
Remaining flow in street below inlet = 22.798 (CFS)

Adding area flow to street
RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.6000
Max. loss rate (Fm) = 0.264 (In/Hr)
Rainfall intensity = 3.946 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KClA) ia C = 0.833
Subarea runoff = 8.430 (CFS) for 3.450 (Ac.)
Total runoff = 62.175 (CFS)
Effective area this stream = 21.05 (Ac.)
Total Study Area (Main Stream No. 1) = 108.94 (Ac.)
Area averaged Fm value = 0.264 (In/Hr)
Street flow at end of street = 31.228 (CFS)
Half street flow at end of street = 15.614 (CFS)
Depth of flow = 0.383 (Ft.), Average velocity = 7.303 (Ft/s)
Flow width (from curb towards crown) = 14.376 (Ft.)

+++++++++++++++++++++++++++++++ Process from Point/Station 240.000 to Point/Station 240.000

**** SUBAREA FLOW ADDITION ****
RESIDENTIAL [3 - 4 dwl/acre]
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.6000
Max loss rate (Fm) = 0.264 (In/Hr)
Time of concentration = 13.53 min.
Rainfall intensity = 3.546 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=K CIA) is C = 0.833
Subarea runoff = 12.287 (CFS) for 4.160 (Ac.)
Total runoff = 74.463 (CFS)
Effective area this stream = 25.21 (Ac.)
Total Study Area (Main Stream No. 1) = 113.10 (Ac.)
Area averaged Fm value = 0.264 (In/Hr)

++
Process from Point/Station 240.000 to Point/Station 250.000
**** STREET INLET + AREA + PIPE TRAVEL TIME ****

Top of street segment elevation = 3041.000 (Ft.)
End of street segment elevation = 3023.000 (Ft.)
Length of street segment = 248.000 (Ft.)
Height of curb above gutter flowline = 6.0 (In.)
Width of half street (curb to crown) = 15.000 (Ft.)
Distance from crown to crossfall grade break = 13.500 (Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000 (Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500 (Ft.)
Gutter hike from flowline = 1.500 (In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130

Street Inlet Calculations:
Street flow before street inlet = 43.516 (CFS)
Half street flow before street inlet = 21.758 (CFS)
Existing pipe flow before street inlet = 30.947 (CFS)
Number of street inlets = 2
Depth of flow = 0.561 (Ft.), Average velocity = 8.943 (Ft/s)
U.S. DOT Hydraulic Engineering Circular No. 12 curb inlet calculations:
Street flow half width at start of inlet = 14.956 (Ft.)
Flow rate in gutter section of street = Qw = 0.023 (CFS)
Ratio of frontal flow to total flow = E0 = 0.3688
Given curb inlet length L = 14.000 (Ft.)

Half street cross section data points at curb inlet:
X-coordinate (Ft.) Y-coordinate (Ft.)
0.0000 0.7867 right of way
6.0000 0.6667 top of curb
6.0000 0.0000 flow line
7.5000 0.2917 gutter/depression end
7.5000 0.2917 grade break
21.0000 0.5617 crown
Length required for total flow interception = Lt
Lt = .6 * Qw*0.42 * Slope^.3 * (1/(n*Se))^0.6 = 47.188 (Ft.)
where Manning's n = 0.0130 and Slope = street slope = 0.0026
Se = Equivalent Street x-slope including depression = 0.1240
Gutter depression depth = 2.000 (In.)
Gutter depression width = 1.500 (Ft.)
Efficiency = 1 - (1-L/Lt)^1.8 = 0.4693

Pipe calculations for under street flow rate of 51.368 (CFS)
Using a pipe slope = 7.031 %
Upstream point/station elevation = 3041.000 (Ft.)
Downstream point/station elevation = 3023.000 (Ft.)
Pipe length = 248.00 (Ft.)
Manning's N = 0.013
No. of pipes = 1
Required pipe flow = 51.368 (CFS)
Nearest computed pipe diameter = 24.00 (In.)
Calculated individual pipe flow = 51.368 (CFS)
Normal flow depth in pipe = 17.11 (In.)
Flow top width inside pipe = 21.72 (In.)
Critical depth could not be calculated.
Pipe flow velocity = 21.46 (Ft/s)
Travel time through pipe = 0.19 min.
Time of concentration (TC) = 13.72 min.
Maximum flow rate of street inlet(s) = 20.421 (CFS)
Maximum pipe flow capacity = 51.368 (CFS)
Remaining flow in street below inlet = 23.095 (CFS)
Adding area flow to street
RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = 0.264 (In/Hr)
Rainfall intensity = 3.511 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q-KCIA) is C = 0.832
Subarea runoff = 2.422 (CFS) for 1.100 (Ac.)
Total runoff = 76.885 (CFS)
Effective area this stream = 26.31 (Ac.)
Total Study Area (Main Stream No. 1) = 114.20 (Ac.)
Area averaged Fm value = 0.264 (In/Hr)
Street flow at end of street = 25.517 (CFS)
Half street flow at end of street = 12.759 (CFS)
Depth of flow = 0.345 (Ft.), Average velocity = 7.791 (Ft/s)
Flow width (from curb towards crown) = 12.515 (Ft.)

--

Process from Point/Station 250.000 to Point/Station 260.000

**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation = 3017.000 (Ft.)
Downstream point/station elevation = 3015.000 (Ft.)
Pipe length = 292.00 (Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 76.885 (CFS)
Nearest computed pipe diameter = 42.00 (In.)
Calculated individual pipe flow = 76.885 (CFS)
Normal flow depth in pipe = 31.83 (In.)
Flow top width inside pipe = 35.99 (In.)
Critical Depth = 32.91 (In.)
Pipe flow velocity = 9.82 (Ft/s)
Travel time through pipe = 0.50 min.
Time of concentration (TC) = 14.22 min.

--

Process from Point/Station 260.000 to Point/Station 265.000

**** CONfluence OF MINOr STREAMS ****

Along Main Stream number: 1 in normal stream number 2
Stream flow area = 26.310 (Ac.)
Runoff from this stream = 76.885 (CFS)
Time of concentration = 14.22 min.
Rainfall intensity = 3.425 (In/Hr)
Area averaged loss rate (Fm) = 0.2640 (In/Hr)
Area averaged Pervious ratio (Ap) = 0.6000
Summary of stream data:

<table>
<thead>
<tr>
<th>Stream Area</th>
<th>Flow rate</th>
<th>TC</th>
<th>Fm</th>
<th>Rainfall Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(Ac.)</td>
<td>(CFS)</td>
<td>(In/Hr)</td>
<td>(In/Hr)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>----</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>126.08</td>
<td>43.992</td>
<td>14.73</td>
<td>0.178</td>
</tr>
<tr>
<td>2</td>
<td>76.89</td>
<td>26.310</td>
<td>14.22</td>
<td>0.264</td>
</tr>
<tr>
<td>Qmax(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>126.079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.973</td>
<td>1.000</td>
<td>76.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qmax(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.027</td>
<td>0.965</td>
<td>126.079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>76.885</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total of 2 streams to confluence:
Flow rates before confluence point:
126.079
76.885
Maximum flow rates at confluence using above data:
200.912 201.796
Area of streams before confluence:
43.992 26.310
Effective area values after confluence:
70.302 68.762
Results of confluence:
Total flow rate = 201.796 (CFS)
Time of concentration = 14.218 min.
Effective stream area after confluence = 68.762 (Ac.)
Study area average Pervious fraction (Ap) = 0.716
Study area average soil loss rate (Fm) = 0.210 (In/Hr)
Study area total (this main stream) = 70.30 (Ac.)
End of computations, Total Study Area = 114.20 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.

Area averaged pervious area fraction (Ap) = 0.771
Area averaged SCS curve number = 67.8
Routing Analysis for Basin"C"
Hydrograph Plot

Hyd. No. 1
RATIONAL HYDG

Hydrograph type = Manual
Storm frequency = 100 yrs

Peak discharge = 201.79 cfs
Time interval = 2 min

Hydrograph Volume = 466,619 cuft
Hydrograph Plot

Hydraflow Hydrographs by intelsolve

Tuesday, Mar 8 2011, 2:42 PM

Hyd. No. 2

DET BASIN-C ROUTING HY

Hydrograph type = Reservoir
Storm frequency = 100 yrs
Inflow hyd. No. = 1
Reservoir name = DETENSION BASIN-C

Peak discharge = 104.16 cfs
Time interval = 2 min
Max. Elevation = 3020.86 ft
Max. Storage = 324,654 cuft

Storage Indication method used.

Hydrograph Volume = 240,498 cuft

DET BASIN-C ROUTING HY

Hyd. No. 2 – 100 Yr

Q (cfs)

210.00
200.00
190.00
180.00
170.00
160.00
150.00
140.00
130.00
120.00
110.00
100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00
0.00

0.00 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0

Time (hrs)

Q (cfs)

210.00
200.00
190.00
180.00
170.00
160.00
150.00
140.00
130.00
120.00
110.00
100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00
0.00

0.00 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0

Hyd No. 2

Hyd No. 1

Req. Stor = 324,654 cuft
Hydrograph Plot

Hyd. No. 2

DET BASIN-C ROUTING HY

<table>
<thead>
<tr>
<th>Hydrograph type</th>
<th>Reservoir</th>
<th>Peak discharge</th>
<th>104.16 cfs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm frequency</td>
<td>100 yrs</td>
<td>Time interval</td>
<td>2 min</td>
</tr>
<tr>
<td>Inflow hyd. No.</td>
<td>1</td>
<td>Max. Elevation</td>
<td>3020.86 ft</td>
</tr>
<tr>
<td>Reservoir name</td>
<td>DETENSION BASIN-C</td>
<td>Max. Storage</td>
<td>324,654 cuft</td>
</tr>
</tbody>
</table>

Storage Indication method used.

Hydrograph Volume = 240,498 cuft

DET BASIN-C ROUTING HY

Elev. (ft)

Hyd. No. 2 -- 100 Yr

Time (hrs)

1. DETENSION BASIN-C
Pond Report

Hydraflow Hydrographs by Intelisolve

Tuesday, Mar 8 2011, 2:43 PM

Pond No. 1 - DETENTION BASIN-C

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

<table>
<thead>
<tr>
<th>Stage (ft)</th>
<th>Elevation (ft)</th>
<th>Contour area (sqft)</th>
<th>Incr. Storage (cuft)</th>
<th>Total storage (cuft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>3014.00</td>
<td>17,049</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>3015.00</td>
<td>186,300</td>
<td>101,675</td>
<td>101,675</td>
</tr>
<tr>
<td>2.00</td>
<td>3016.00</td>
<td>20,274</td>
<td>103,287</td>
<td>204,962</td>
</tr>
<tr>
<td>3.00</td>
<td>3017.00</td>
<td>21,980</td>
<td>21,127</td>
<td>226,089</td>
</tr>
<tr>
<td>4.00</td>
<td>3018.00</td>
<td>23,748</td>
<td>22,864</td>
<td>248,953</td>
</tr>
<tr>
<td>5.00</td>
<td>3019.00</td>
<td>25,578</td>
<td>24,663</td>
<td>273,616</td>
</tr>
<tr>
<td>6.00</td>
<td>3020.00</td>
<td>27,464</td>
<td>26,521</td>
<td>300,137</td>
</tr>
<tr>
<td>7.00</td>
<td>3021.00</td>
<td>29,417</td>
<td>28,441</td>
<td>328,577</td>
</tr>
</tbody>
</table>

Culvert / Orifice Structures

<table>
<thead>
<tr>
<th>[A]</th>
<th>[B]</th>
<th>[C]</th>
<th>[D]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise (in)</td>
<td>30.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Span (in)</td>
<td>30.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>No. Barrels</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Invert El. (ft)</td>
<td>3017.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>132.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Slope (%)</td>
<td>1.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>N-Value</td>
<td>0.013</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Orif. Coeff.</td>
<td>0.60</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Multi-Stage</td>
<td>n/a</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Weir Structures

<table>
<thead>
<tr>
<th>[A]</th>
<th>[B]</th>
<th>[C]</th>
<th>[D]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest Len (ft)</td>
<td>90.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Crest El. (ft)</td>
<td>3020.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Weir Coeff.</td>
<td>3.33</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Weir Type</td>
<td>Rect</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Multi-Stage</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Exfiltration = 0.000 in/hr (Contour) Tailwater Elev. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Stage / Discharge

Stage (ft)

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 110.00 120.00 130.00 140.00 150.00

Discharge (cfs)

8.00 6.00 4.00 2.00 0.00

Total Q
DETECTION BASIN-C

132.0 LF of 30.0 in @ 1.50%
CulvA - Inv. 3017.00

Front View
NTS - Looking Downstream

(100 yr)

Schematic only. Not for construction.
ITEM-1 Basin Routing Backup Data
For Basin-A
"Onsite Area-2", Pre Development
Rational Method Analysis
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCA/DVCIVILDESIGN Engineering Software, (C) 1989-2004 Version 7.0
Rational Hydrology Study
Date: 03/08/11
Program License Serial Number 4004

**
**** Hydrology Study Control Information ******************
**

Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.250 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3

**
Process from Point/Station 1.000 to Point/Station 2.000

**** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Adjusted SCS curve number for AMC 3 = 92.80
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.140(In/Hr)

Initial subarea data:
Initial area flow distance = 928.000(Ft.)
Top (of initial area) elevation = 3210.000(Ft.)
Bottom (of initial area) elevation = 3165.000(Ft.)
Difference in elevation = 45.000(Ft.)
Slope = 0.04849 s(%) = 4.85
Tc = k(0.525)*{(length^3)/(elevation change)}^0.2
Initial area time of concentration = 14.793 min.

Rainfall intensity = 3.331(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=RCIA) is C = 0.862
Subarea runoff = 28.518(CFS)
Total initial stream area = 9.930(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.140(In/Hr)

Process from Point/Station 2.000 to Point/Station 3.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.246(Ft.), Average velocity = 3.037(Ft/s)

!!Warning: Water is above left or right bank elevations

Information entered for subchannel number 1:

Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 175.00 1.00
3 553.00 4.00

Manning's 'N' friction factor = 0.030

Sub-Channel flow = 16.020(CFS)
\begin{itemize}
 \item flow top width = 42.969(Ft.)
 \item velocity= 3.037(Ft/s)
 \item area = 5.275(Sq.Ft)
 \item Froude number = 1.527
\end{itemize}
Information entered for subchannel number 2:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 58.00 1.00
3 530.00 4.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 5.309(CFS)
' ' flow top width = 14.241(Ft.)
' ' velocity= 3.037(Ft/s)
' ' area = 1.748(Sq.Ft)
' ' Froude number = 1.527

Information entered for subchannel number 3:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 175.00 1.00
3 390.00 5.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 16.020(CFS)
' ' flow top width = 42.969(Ft.)
' ' velocity= 3.037(Ft/s)
' ' area = 5.275(Sq.Ft)
' ' Froude number = 1.527
Upstream point elevation = 3165.000(Ft.)
Downstream point elevation = 3135.000(Ft.)
Flow length = 487.000(Ft.)
Travel time = 2.67 min.
Time of concentration = 17.47 min.
Depth of flow = 0.246(Ft.)
Average velocity = 3.037(Ft/s)
Total irregular channel flow = 37.349(CFS)
Irregular channel normal depth above invert elev. = 0.246(Ft.)
Average velocity of channel(s) = 3.037(Ft/s)

!! WARNING: Water is above left or right bank elevations

Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 78.00
Adjusted SCS curve number for AMC 3 = 92.80
Pervious ratio(Api) = 1.0000 Max loss rate(Fm) = 0.140(In/HR)
Rainfall intensity = 2.965(In/HR) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method) Q=RC/I is C = 0.858
Subarea runoff = 17.609(CFS) for 8.210(Ac.)
Total runoff = 46.128(CFS)
Effective area this stream = 18.14(Ac.)
Total Study Area (Main Stream No. 1) = 18.14(Ac.)
Area averaged Fm value = 0.140(In/HR)
Depth of flow = 0.266(Ft.), Average velocity = 3.201(Ft/s)

!! WARNING: Water is above left or right bank elevations
End of computations, Total Study Area = 18.14 (Ac.)
The following figures may be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Api) = 1.000
Area averaged SCS curve number = 78.0
"Onsite Area-2", Post Development Rational Method Analysis
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCAD/CIVILDESIGN Engineering Software, (c) 1989-2004 Version 7.0
Rational Hydrology Study Date: 03/08/11

POST DEV AREA-Z, DEV-1
TR 18255
Q100 1HR
RATIONAL METHOD

Program License Serial Number 4004

********* Hydrology Study Control Information *********

Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1,250 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3

Process from Point/Station 400,000.000 to Point/Station 410,000.000

**** INITIAL AREA EVALUATION ****

RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm) = 0.264(In/Hr)
Initial subarea data:
Initial area flow distance = 325,000(Ft.)
Top (of initial area) elevation = 3168.000(Ft.)
Bottom (of initial area) elevation = 3159.000(Ft.)
Difference in elevation = 9.000(Ft.)
Slope = 0.02769 s(%) = 2.77
TC = k(0.412)^[length^3]/elevation change]^0.2
Initial area time of concentration = 8.535 min.
Rainfall intensity = 4.895(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KClA) is C = 0.851
Subarea runoff = 13.630(CFS)
Total initial stream area = 3.270(Ac.)
Pervious area fraction = 0.600
Initial area Fm value = 0.264(In/Hr)

Process from Point/Station 410,000.000 to Point/Station 420,000.000

**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation = 3154.000(Ft.)
Downstream point/station elevation = 3128.000(Ft.)
Pipe length = 257.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 13.630(CFS)
Nearest computed pipe diameter = 15.00(In.)
Calculated individual pipe flow = 13.630(CFS)
Normal flow depth in pipe = 8.93(In.)
Flow top width inside pipe = 14.72(In.)
Critical depth could not be calculated.
Pipe flow velocity = 17.91(Ft/s)
Travel time through pipe = 0.24 min.
Time of concentration (TC) = 8.77 min.

Process from Point/Station 420,000.000 to Point/Station 425,000.000

**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 3.270(Ac.)
Runoff from this stream = 13.630(CFS)
Time of concentration = 8.77 min.
Rainfall intensity = 4.802(In/Hr)
Area averaged loss rate (Fm) = 0.2640(In/Hr)
Area averaged Pervious ratio (Ap) = 0.6000

Summary of stream data:

<table>
<thead>
<tr>
<th>Stream No.</th>
<th>Area (Ac.)</th>
<th>Flow rate (CFS)</th>
<th>TC (min)</th>
<th>Fm (In/Hr)</th>
<th>Rainfall Intensity (In/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.63</td>
<td>3.270</td>
<td>8.77</td>
<td>0.264</td>
<td>4.802</td>
</tr>
</tbody>
</table>

\[Q_{\text{max}}(1) = 1.000 \times 1.000 \times 13.630 + = 13.630 \]

Total of 1 streams to confluence:
Flow rates before confluence point:
13.630
Maximum flow rates at confluence using above data:
13.630
Area of streams before confluence:
3.270
Effective area values after confluence:
3.270

Results of confluence:
Total flow rate = 13.630 (CFS)
Time of concentration = 8.774 min.
Effective stream area after confluence = 3.270 (Ac.)
Study area average Pervious fraction (Ap) = 0.600
Study area average soil loss rate (Fm) = 0.264 (In/Hr)
Study area total (this main stream) = 3.27 (Ac.)
End of computations, Total Study Area = 3.27 (Ac.)
The following figures may be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.
Area averaged pervious area fraction (Ap) = 0.600
Area averaged SCS curve number = 56.0
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCAD/CIVILDESIGN Engineering Software, (c) 1989-2004 Version 7.0
Rational Hydrology Study
Date: 03/08/11

POST DEV AREA-2, DEV-2 TO DEV-4
TR 18255
Q100 1HR
RATIONAL METHOD

Program License Serial Number 4004

********** Hydrology Study Control Information **********

Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.250 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3

+++
Process from Point/Station 300.000 to Point/Station 310.000

*** INITIAL AREA EVALUATION ***

RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm) = 0.264 (In/Hr)

Initial subarea data:
Initial area flow distance = 644.000(Ft.)
Top (of initial area) elevation = 3180.000(Ft.)
Bottom (of initial area) elevation = 3169.000(Ft.)
Difference in elevation = 11.000(Ft.)
Slope = 0.01708 a($) = 1.71
TC = k(0.412) * [(length^3)/(elevation change)] ^0.2
Initial area time of concentration = 12.358 min.
Rainfall intensity = 3.778(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KClA) is C = 0.837
Subarea runoff = 12.935(CFS)
Total initial stream area = 4.090(Ac.)
Pervious area fraction = 0.600
Initial area Fm value = 0.264(In/Hr)

+++
Process from Point/Station 310.000 to Point/Station 320.000

*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***

Top of street segment elevation = 3169.000(Ft.)
End of street segment elevation = 3155.000(Ft.)
Length of street segment = 255.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 13.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500(Ft.)
Gutter rise from flowline = 1.500(In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street = 24.097(CFS)
Depth of flow = 0.354(Ft.), Average velocity = 6.913(Ft/s)
Streamflow hydraulics at midpoint of street travel:
Halfstreet flow width = 12.929(Ft.)
Flow velocity = 6.91(Ft/s)
Travel time = 0.61 min. TC = 12.97 min.
Adding area flow to street
RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil (AMC 2) = 56.00
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = 0.264 (In/Hr)
Rainfall intensity = 3.652 (In/Hr) for \(t = 100.0 \) year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q = KCIA) is \(C = 0.835 \)
Subarea runoff = 22.159 (CFS) for 7.420 (Ac.)
Total runoff = 35.093 (CFS)
Effective area this stream = 11.51 (Ac.)
Total Study Area (Main Stream No. 1) = 11.51 (Ac.)
Area averaged Fm value = 0.264 (In/Hr)
Street flow at end of street = 35.093 (CFS)
Half street flow at end of street = 17.547 (CFS)
Depth of flow = 0.395 (Ft.), Average velocity = 7.578 (Ft/s)
Flow width (from curb towards crown) = 14.980 (Ft.)

+++
Process from Point/Station = 320.000 to Point/Station = 330.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation = 3155.000 (Ft.)
End of street segment elevation = 3141.000 (Ft.)
Length of street segment = 290.000 (Ft.)
Height of curb above gutter flowline = 6.0 (In.)
Width of half street (curb to crown) = 15.000 (Ft.)
Distance from crown to crossfall grade break = 13.500 (Ft.)
Slope from gutter to grade break (v/hz) = 0.083
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 6.000 (Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 1.500 (Ft.)
Gutter rise from flowline = 1.500 (In.)
Manning's N in gutter = 0.0130
Manning's N from gutter to grade break = 0.0130
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street = 39.465 (CFS)
Depth of flow = 0.413 (Ft.), Average velocity = 7.635 (Ft/s)
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 15.000 (Ft.)
Flow velocity = 7.63 (Ft/s)
Travel time = 0.63 min.
TC = 13.61 min.
Adding area flow to street
RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
Adjusted SCS curve number for AMC 3 = 75.80
Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) = 0.264 (In/Hr)
Rainfall intensity = 3.532 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q = KCIA) is \(C = 0.833 \)
Subarea runoff = 8.641 (CFS) for 3.360 (Ac.)
Total runoff = 43.735 (CFS)
Effective area this stream = 14.87 (Ac.)
Total Study Area (Main Stream No. 1) = 14.87 (Ac.)
Area averaged Fm value = 0.264 (In/Hr)
Street flow at end of street = 43.735 (CFS)
Half street flow at end of street = 21.867 (CFS)
Depth of flow = 0.424 (Ft.), Average velocity = 7.953 (Ft/s)
Rainfall intensity = 3.652 (In/Hr) for a 100.0 year storm
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown) = 15.000 (Ft.)

+++
Process from Point/Station = 330.000 to Point/Station = 340.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation = 3136.000 (Ft.)
Downstream point/station elevation = 3128.000(Ft.)
Pipe length = 79.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 43.735(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 43.735(CFS)
Normal flow depth in pipe = 15.12(In.)
Flow top width inside pipe = 18.86(In.)
Critical depth could not be calculated.
Pipe flow velocity = 23.61(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 13.66 min.

--
Process from Point/Station 340.000 to Point/Station 345.000
**** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 1
Stream flow area = 14.870(Ac.)
Runoff from this stream = 43.735(CFS)
Time of concentration = 13.66 min.
Rainfall intensity = 3.522(In/Hr)
Area averaged loss rate (Fm) = 0.2640(In/Hr)
Area averaged Pervious ratio (Ap) = 0.6000
Summary of stream data:

<table>
<thead>
<tr>
<th>Stream No.</th>
<th>Area (Ac.)</th>
<th>Flow rate (CFS)</th>
<th>TC (min)</th>
<th>Fm (In/Hr)</th>
<th>Rainfall Intensity (In/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.73</td>
<td>14.870</td>
<td>13.66</td>
<td>0.264</td>
<td>3.522</td>
</tr>
</tbody>
</table>

Qmax(1) = 1.000 * 1.000 * 43.735 = 43.735

Total of 1 streams to confluence:
Flow rates before confluence point:
43.735
Maximum flow rates at confluence using above data:
43.735
Area of streams before confluence:
14.870
Effective area values after confluence:
14.870

Results of confluence:
Total flow rate = 43.735(CFS)
Time of concentration = 13.662 min.
Effective stream area after confluence = 14.870(Ac.)
Study area average Pervious fraction(Ap) = 0.600
Study area average soil loss rate(Fm) = 0.264(In/Hr)
Study area total (this main stream) = 14.87(Ac.)
End of computations, Total Study Area = 14.87 (Ac.)
The following figures may be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 0.600
Area averaged SCS curve number = 56.9
Routing Analysis for Basin"A"
Hydrograph Plot

Hyd. No. 1
HYDG DEV2-DEV4

Hydrograph type = Manual
Storm frequency = 100 yrs

Peak discharge = 43.74 cfs
Time interval = 2 min

Hydrograph Volume = 60,517 cu ft
Hyd. No. 2

HYDG DEV-1

Hydrograph type = Manual
Storm frequency = 100 yrs

Peak discharge = 13.63 cfs
Time interval = 2 min

Hydrograph Volume = 13,540 cuft
Hydrograph Plot

Hyd. No. 3

COM HYDG

Hydrograph type = Combine
Storm frequency = 100 yrs
Inflow hyds. = 1, 2

Peak discharge = 54.43 cfs
Time interval = 2 min

Hydrograph Volume = 74,057 cuft
Hydrograph Plot

Hyd. No. 4
BASIN-A ROUTING HYDG

Hydrograph type = Reservoir
Storm frequency = 100 yrs
Inflow hyd. No. = 3
Reservoir name = DET BASIN-A

Peak discharge = 18.35 cfs
Time interval = 2 min
Max. Elevation = 3128.62 ft
Max. Storage = 51,228 cuft

Storage Indication method used.

Hydrograph Volume = 53,437 cuft

BASIN-A ROUTING HYDG

Q (cfs)

Hyd. No. 4 – 100 Yr

Q (cfs)

Time (hrs)

0.00 0.3 0.7 1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7

Hyd No. 4 Hyd No. 3 Req. Stor = 51,228 cuft
Hydrograph Plot

Hyd. No. 4
BASIN-A ROUTING HYDG

Hydrograph type = Reservoir
Storm frequency = 100 yrs
Inflow hyd. No. = 3
Reservoir name = DET BASIN-A

Peak discharge = 18.35 cfs
Time interval = 2 min
Max. Elevation = 3128.62 ft
Max. Storage = 51,228 cuft

Storage Indication method used.

Hydrograph Volume = 53,437 cuft

BASIN-A ROUTING HYDG

Hyd. No. 4 -- 100 Yr
Pond Report

Hydraflow Hydrographs by Intelisolve

Wednesday, Mar 2 2011, 9:58 AM

Pond No. 1 - DET BASIN-A

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

<table>
<thead>
<tr>
<th>Stage (ft)</th>
<th>Elevation (ft)</th>
<th>Contour area (sqft)</th>
<th>Incr. Storage (cuft)</th>
<th>Total storage (cuft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>3125.00</td>
<td>11,732</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>3126.00</td>
<td>13,038</td>
<td>12,385</td>
<td>12,385</td>
</tr>
<tr>
<td>2.00</td>
<td>3127.00</td>
<td>14,371</td>
<td>13,705</td>
<td>26,090</td>
</tr>
<tr>
<td>3.00</td>
<td>3128.00</td>
<td>15,730</td>
<td>15,051</td>
<td>41,140</td>
</tr>
<tr>
<td>4.00</td>
<td>3129.00</td>
<td>17,114</td>
<td>16,422</td>
<td>57,562</td>
</tr>
<tr>
<td>5.00</td>
<td>3130.00</td>
<td>18,525</td>
<td>17,820</td>
<td>75,382</td>
</tr>
</tbody>
</table>

Culvert / Orifice Structures

<table>
<thead>
<tr>
<th>[A]</th>
<th>[B]</th>
<th>[C]</th>
<th>[D]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise (in)</td>
<td>= 18.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Span (in)</td>
<td>= 18.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>No. Barrels</td>
<td>= 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Invert El. (ft)</td>
<td>= 3126.60</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>= 64.22</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Slope (%)</td>
<td>= 0.93</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>N-Value</td>
<td>= .013</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Orif. Coeff.</td>
<td>= 0.60</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Multi-Stage</td>
<td>= n/a</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Weir Structures

<table>
<thead>
<tr>
<th>[A]</th>
<th>[B]</th>
<th>[C]</th>
<th>[D]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest Len (ft)</td>
<td>= 0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Crest El. (ft)</td>
<td>= 0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Weir Coeff.</td>
<td>= 0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Weir Type</td>
<td>= ---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Multi-Stage</td>
<td>= No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Exfiltration = 0.000 in/hr (Contour) Tailwater Elev. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.
DET BASIN-A

Top of pond
Elev. 3130.00

64.2 LF of 18.0 in @ 0.33%
CulvA - Inv. 3126.60

Front View
NTS - Looking Downstream

Schematic only. Not for construction.
ITEM-2 Storm Water Channel Analysis Backup Data
For Channel-1
“Offsite-3”, Pre Development Rational Method Analysis
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCAD/CIVILEDSM Engineering Software, (c) 1989-2004 Version 7.0
Rational Hydrology Study
Date: 03/08/11

PRE DEV OFFSITE-3
TR 18255
RATIONAL METHOD
Q100 1HR

Program License Serial Number 4004

********* Hydrology Study Control Information *********

Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.300 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3

+----------------------------------+
| Process from Point/Station |
| 1.000 to Point/Station |
| 2.000 |
| **** INITIAL AREA EVALUATION ****|
+----------------------------------+

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 93.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.077(In/Hr)
Initial subarea data:
Initial area flow distance = 978.250(Ft.)
Top (of initial area) elevation = 3983.000(Ft.)
Bottom (of initial area) elevation = 3589.000(Ft.)
Difference in elevation = 394.000(Ft.)
Slope = 0.40276 s(%) = 40.28
TC = k(0.525) * (length^3)/(elevation change)^0.2
Initial area time of concentration = 9.893 min.
Rainfall intensity = 4.591(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=RCIA) is C = 0.885
Subarea runoff = 36.728(CFS)
Total initial stream area = 9.040(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.077(In/Hr)

+----------------------------------+
| Process from Point/Station |
| 2.000 to Point/Station |
| 3.000 |
| **** IRREGULAR CHANNEL FLOW TRAVEL TIME ****|
+----------------------------------+

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.351(Ft.), Average velocity = 6.208(Ft/s)
!!Warning: Water is above left or right bank elevations

******* Irregular Channel Data *********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 427.50 5.00
3 855.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 65.487(CFS)
' ' flow top width = 60.063(Ft.)
' ' velocity= 6.208(Ft/s)
' ' area = 10.549(Sq.Ft)
' ' Froude number = 2.611
Upstream point elevation = 3589.000(Ft.)
Downstream point elevation = 3458.000(Ft.)
Flow length = 820.130(Ft.)
Travel time = 2.20 min.
Time of concentration = 12.09 min.
Depth of flow = 0.351(Ft.)
Average velocity = 6.208(Ft/s)
Total irregular channel flow = 65.486(CFS)
Irregular channel normal depth above invert elev. = 0.351(Ft.)
Average velocity of channel(s) = 6.208(Ft/s)

!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 3.969(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method) (Q=KCTA) is C = 0.883
Subarea runoff = 57.450(CFS) for 17.710(Ac.)
Total runoff = 94.178(CFS)
Effective area this stream = 26.75(Ac.)
Total Study Area (Main Stream No. 1) = 26.75(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.403(Ft.), Average velocity = 6.798(Ft/s)

!!Warning: Water is above left or right bank elevations

Process from Point/Station 3.000 to Point/Station 4.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.471(Ft.), Average velocity = 5.627(Ft/s)

!!Warning: Water is above left or right bank elevations

Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 459.00 5.00
3 918.00 0.00
Manning's 'n' friction factor = 0.030

Sub-Channel flow = 114.732(CFS)
' ' flow top width = 86.525(Ft.)
' ' velocity= 5.627(Ft/s)
' ' area = 20.388(Sq.Ft)
' ' Froude number = 2.043

Upstream point elevation = 3458.000(Ft.)
Downstream point elevation = 3376.000(Ft.)
Flow length = 924.620(Ft.)
Travel time = 2.74 min.
Time of concentration = 14.83 min.
Depth of flow = 0.471(Ft.)
Average velocity = 5.627(Ft/s)
Total irregular channel flow = 114.731(CFS)
Irregular channel normal depth above invert elev. = 0.471(Ft.)
Average velocity of channel(s) = 5.627(Ft/s)

!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 3.458 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.880
Subarea runoff = 41.011 (CFS) for 17.680 (Ac.)
Total runoff = 135.189 (CFS)
Effective area this stream = 44.43 (Ac.)
Total Study Area (Main Stream No. 1) = 44.43 (Ac.)
Area averaged Fm value = 0.077 (In/Hr)
Depth of flow = 0.501 (Ft.), Average velocity = 5.863 (Ft/s)
!! Warning: Water is above left or right bank elevations

+++
Process from Point/Station 4.000 to Point/Station 5.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.510 (Ft.), Average velocity = 6.027 (Ft/s)
!! Warning: Water is above left or right bank elevations

****** Irregular Channel Data **********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 490.00 5.00
3 980.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 153.748 (CFS)
' ' flow top width = 99.997 (Ft.)
' ' velocity = 6.027 (Ft/s)
' ' area = 25.509 (Sq.Ft.)
' ' Froude number = 2.103

Upstream point elevation = 3376.000 (Ft.)
Downstream point elevation = 3309.000 (Ft.)
Flow length = 732.020 (Ft.)
Travel time = 2.02 min.
Time of concentration = 16.86 min.
Depth of flow = 0.510 (Ft.)
Average velocity = 6.027 (Ft/s)
Total irregular channel flow = 153.748 (CFS)
Irregular channel normal depth above invert elev. = 0.510 (Ft.)
Average velocity of channel(s) = 6.027 (Ft/s)
!! Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 63.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000
Max loss rate (Fm) = 0.077 (In/Hr)
Rainfall intensity = 3.162 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.878
Subarea runoff = 37.047 (CFS) for 17.610 (Ac.)
Total runoff = 172.236 (CFS)
Effective area this stream = 62.04 (Ac.)
Total Study Area (Main Stream No. 1) = 62.04 (Ac.)
Area averaged Fm value = 0.077 (In/Hr)
Depth of flow = 0.532 (Ft.), Average velocity = 6.201 (Ft/s)
!! Warning: Water is above left or right bank elevations

+++
Process from Point/Station 5.000 to Point/Station 6.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.563 (Ft.), Average velocity = 5.407 (Ft/s)
!! Warning: Water is above left or right bank elevations

******** Irregular Channel Data **********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
 1 0.00 0.00
 2 546.00 5.00
 3 1092.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 187.224(CFS)
 ' flow top width = 122.977(Ft.)
 ' velocity= 5.408(Ft/s)
 ' area = 34.623(Sq.Ft)
 ' Froude number = 1.796

Upstream point elevation = 3309.000(Ft.)
Downstream point elevation = 3263.000(Ft.)
Flow length = 712.180(Ft.)
Travel time = 2.20 min.
Time of concentration = 19.05 min.
Depth of flow = 0.563(Ft.)
Average velocity = 5.407(Ft/s)
Total irregular channel flow = 187.224(CFS)
Irregular channel normal depth above invert elev. = 0.563(Ft.)
Average velocity of channel(s) = 5.407(Ft/s)
!!Warning: Water is above left or right bank elevations

Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.077(In/Hr)
Rainfall intensity = 2.902(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.876
Subarea runoff = 29.898(CFS) for 17.460(Ac.)
Total runoff = 202.134(CFS)
Effective area this stream = 79.50(Ac.)
Total Study Area (Main Stream No. 1) = 79.50(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.579(Ft.), Average velocity = 5.512(Ft/s)
!!Warning: Water is above left or right bank elevations

END

******** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.587(Ft.), Average velocity = 5.613(Ft/s)
!!Warning: Water is above left or right bank elevations

******** Irregular Channel Data **********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
 1 0.00 0.00
 2 554.50 5.00
 3 1109.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 214.124(CFS)
 ' flow top width = 130.088(Ft.)
 ' velocity= 5.613(Ft/s)
 ' area = 38.149(Sq.Ft)
 ' Froude number = 1.827

Upstream point elevation = 3263.000(Ft.)
Downstream point elevation = 3230.000(Ft.)
Flow length = 500.700(Ft.)
Travel time = 1.49 min.
Time of concentration = 20.54 min.
Depth of flow = 0.587(Ft.)
Average velocity = 5.613(Ft/s)
Total irregular channel flow = 214.123(CFS)
Irregular channel normal depth above invert elev. = 0.587(Ft.)
Average velocity of channel(s) = 5.613(Ft/s)

!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077(In/Hr)
Rainfall intensity = 2.753(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q = KCIA) is C = 0.875
Subarea runoff = 23.927(CFS) for 14.350(Ac.)
Total runoff = 226.060(CFS)
Effective area this stream = 93.85(Ac.)
Total Study Area (Main Stream No. 1) = 93.85(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.599(Ft.), Average velocity = 5.689(Ft/s)

!!Warning: Water is above left or right bank elevations

++
Process from Point/Station 7.000 to Point/Station 8.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.629(Ft.), Average velocity = 5.900(Ft/s)

!!Warning: Water is above left or right bank elevations

******** Irregular Channel Data

--
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 494.00 5.00
3 998.00 0.00
Manning's 'N' friction factor = 0.030
--
Sub-Channel flow = 232.887(CFS)
' ' flow top width = 125.524(Ft.)
' ' velocity = 5.900(Ft/s)
' ' area = 39.470(Sq.Ft)
' ' Froude number = 1.854

Upstream point elevation = 3230.000(Ft.)
Downstream point elevation = 3200.000(Ft.)
Flow length = 452.040(Ft.)
Travel time = 1.28 min.
Time of concentration = 21.82 min.
Depth of flow = 0.629(Ft.)
Average velocity = 5.900(Ft/s)
Total irregular channel flow = 232.886(CFS)
Irregular channel normal depth above invert elev. = 0.629(Ft.)
Average velocity of channel(s) = 5.900(Ft/s)

!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077(In/Hr)
Rainfall intensity = 2.639(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.874
Subarea runoff = 13.565(CFS) for 10.050(Ac.)
Total runoff = 239.625(CFS)
Effective area this stream = 103.90(Ac.)
Total Study Area (Main Stream No. 1) = 103.90(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.636(Ft.), Average velocity = 5.943(Ft/s)
!!Warning: Water is above left or right bank elevations

+--+
Process from Point/Station 8.000 to Point/Station 9.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
+--+
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.707(Ft.), Average velocity = 4.588(Ft/s)
!!Warning: Water is above left or right bank elevations
+++++ Irregular Channel Data ++++
+--+
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 523.00 5.00
3 1046.00 0.00
Manning's 'N' friction factor = 0.030
+--+
Sub-Channel flow = 240.053(CFS)
' ' flow top width = 147.958(Ft.)
' ' velocity= 4.588(Ft/s)
' ' area = 52.322(Sq.Ft)
' ' Froude number = 1.360
+--+
Upstream point elevation = 3200.000(Ft.)
Downstream point elevation = 3173.000(Ft.)
Flow length = 786.970(Ft.)
Travel time = 2.86 min.
Time of concentration = 24.68 min.
Depth of flow = 0.707(Ft.)
Average velocity = 4.588(Ft/s)
Total irregular channel flow = 240.053(CFS)
Irregular channel normal depth above invert elev. = 0.707(Ft.)
Average velocity of channel(s) = 4.588(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 2.421(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.871
Subarea runoff = 0.760(CFS) for 10.020(Ac.)
Total runoff = 240.386(CFS)
Effective area this stream = 113.92(Ac.)
Total Study Area (Main Stream No. 1) = 113.92(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.708(Ft.), Average velocity = 4.590(Ft/s)
!!Warning: Water is above left or right bank elevations

+--+
Process from Point/Station 8.000 to Point/Station 9.000
**** CONFLUENCE OF MINOR STREAMS ****
+--+
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 113.920(Ac.)
Runoff from this stream = 240.386(CFS)
Time of concentration = 24.68 min.
Rainfall intensity = 2.421 (In/Hr)
Area averaged loss rate \((Fm) = 0.0768 (In/Hr)\)
Area averaged Pervious ratio \((Ap) = 1.000\)

Summary of stream data:

<table>
<thead>
<tr>
<th>Stream No.</th>
<th>Area (Ac.)</th>
<th>Flow rate (CFS)</th>
<th>TC (min)</th>
<th>Fm (In/Hr)</th>
<th>Rainfall Intensity (In/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>240.39</td>
<td>113.920</td>
<td>24.68</td>
<td>0.077</td>
<td>2.421</td>
</tr>
</tbody>
</table>

\[Q_{\text{max}}(1) = 1.000 \times 1.000 \times 240.386 + = 240.386 \]

Total of 1 streams to confluence:
Flow rates before confluence point:
240.386
Maximum flow rates at confluence using above data:
240.386
Area of streams before confluence:
113.920
Effective area values after confluence:
113.920
Results of confluence:
Total flow rate = 240.386 (CFS)
Time of concentration = 24.675 min.
Effective stream area after confluence = 113.920 (Ac.)
Study area average Pervious fraction \((Ap) = 1.000\)
Study area average soil loss rate \((Fm) = 0.077 (In/Hr)\)
Study area total (this main stream) = 113.920 (Ac.)
End of computations, Total Study Area = 113.920 (Ac.)
The following figures may be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.
Area averaged pervious area fraction \((Ap) = 1.000\)
Area averaged SCS curve number = 83.5
Hecras Analysis
Channel “1”
Pre and Post Development
PROJECT DATA
Project Title: 07014
Project File: PRECHANNEL1.prj
Run Date and Time: 3/7/2011 3:47:35 PM
Project in English units
Project Description:
******** Autodesk, Inc. HEC-2 Input Data file ********

Minimum Data Input **************

PLAN DATA
Plan Title: Imported Plan 01
Plan File: C:\PRECHANNEL1.p01

Geometry Title: Imported Geom 01
Geometry File: C:\PRECHANNEL1.g01

Flow Title: Imported Flow 01
Flow File: C:\PRECHANNEL1.f01

Plan Summary Information:
Number of Cross Sections = 9 Multiple Openings = 0
Culverts = 0 Inline Structures = 0
Bridges = 0 Lateral Structures = 0

Computational Information
Water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor = 0.001

Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow

FLOW DATA
Flow Title: Imported Flow 01
Flow File: C:\PRECHANNEL1.f01

Flow Data (cfs)

<table>
<thead>
<tr>
<th>River</th>
<th>Reach</th>
<th>RS</th>
<th>PF 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVER-1</td>
<td>Reach-1</td>
<td>9</td>
<td>351</td>
</tr>
</tbody>
</table>
Boundary Conditions

<table>
<thead>
<tr>
<th>River</th>
<th>Reach</th>
<th>Profile</th>
<th>Upstream</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVER-1</td>
<td>Reach-1</td>
<td>PF 1</td>
<td>Critical</td>
<td></td>
</tr>
</tbody>
</table>

GEOMETRY DATA

Geometry Title: Imported Geom 01
Geometry File: C:\PRECHANNEL1.g01

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 9

INPUT

Description:
Station Elevation Data

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3182.7</td>
<td>10.92</td>
<td>3182.36</td>
<td>31.1</td>
<td>3182.5</td>
</tr>
<tr>
<td>48.62</td>
<td>3182.94</td>
<td>80.85</td>
<td>3182.66</td>
<td>92.30</td>
<td>3182.12</td>
</tr>
<tr>
<td>108.47</td>
<td>3181.14</td>
<td>210.43</td>
<td>3181.26</td>
<td>133.06</td>
<td>3181.31</td>
</tr>
<tr>
<td>141.45</td>
<td>3179.51</td>
<td>143.96</td>
<td>3180</td>
<td>149.66</td>
<td>3177.99</td>
</tr>
<tr>
<td>165.49</td>
<td>3175</td>
<td>171.08</td>
<td>3175</td>
<td>171.79</td>
<td>3175.65</td>
</tr>
<tr>
<td>174.89</td>
<td>3177.49</td>
<td>177.35</td>
<td>3179.6</td>
<td>179.53</td>
<td>3181</td>
</tr>
<tr>
<td>188.61</td>
<td>3181</td>
<td>192.66</td>
<td>3180</td>
<td>197.12</td>
<td>3179</td>
</tr>
<tr>
<td>209.55</td>
<td>3181.07</td>
<td>213.63</td>
<td>3182</td>
<td>217.9</td>
<td>3182.56</td>
</tr>
<tr>
<td>236.14</td>
<td>3181.49</td>
<td>243.92</td>
<td>3181.49</td>
<td>264.12</td>
<td>3180.4</td>
</tr>
<tr>
<td>282.45</td>
<td>3179.9</td>
<td>286.8</td>
<td>3179.92</td>
<td>287.98</td>
<td>3179.84</td>
</tr>
</tbody>
</table>

Manning's n Values

<table>
<thead>
<tr>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
0 301.06 171.47 151.84 134.56 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 8

INPUT

Description:
Station Elevation Data

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3175.1</td>
<td>4.47</td>
<td>3175</td>
<td>9.36</td>
<td>3174.83</td>
</tr>
<tr>
<td>30.46</td>
<td>3174</td>
<td>32.65</td>
<td>3173.92</td>
<td>34.39</td>
<td>3173.88</td>
</tr>
<tr>
<td>54.87</td>
<td>3173</td>
<td>57.83</td>
<td>3173</td>
<td>59.85</td>
<td>3172.89</td>
</tr>
<tr>
<td>82.7</td>
<td>3172.71</td>
<td>97.37</td>
<td>3172.48</td>
<td>112.62</td>
<td>3172.38</td>
</tr>
<tr>
<td>127.12</td>
<td>3172</td>
<td>143.17</td>
<td>3172</td>
<td>145.3</td>
<td>3171</td>
</tr>
<tr>
<td>148.02</td>
<td>3169</td>
<td>150.08</td>
<td>3168.18</td>
<td>150.33</td>
<td>3168</td>
</tr>
<tr>
<td>154.11</td>
<td>3168.58</td>
<td>155.18</td>
<td>3169</td>
<td>155.7</td>
<td>3169.72</td>
</tr>
<tr>
<td>160.5</td>
<td>3171</td>
<td>160.85</td>
<td>3171.19</td>
<td>162.88</td>
<td>3172</td>
</tr>
<tr>
<td>174.07</td>
<td>3173</td>
<td>183.38</td>
<td>3172.33</td>
<td>184.74</td>
<td>3172.26</td>
</tr>
<tr>
<td>244.26</td>
<td>3173</td>
<td>245.33</td>
<td>3173</td>
<td>258.08</td>
<td>3173.22</td>
</tr>
</tbody>
</table>

Manning's n Values

<table>
<thead>
<tr>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
0 270.45 159.94 147.9 137.74 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 7

INPUT

Description:
Station Elevation Data | num= 50
<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>315.98</td>
<td>315.28</td>
<td>315.28</td>
<td>315.28</td>
<td>315.28</td>
</tr>
</tbody>
</table>

Manning's n Values | num= 3
Sta n Val	Sta n Val	Sta n Val
0.03	0.03	0.03
0.03	0.03	0.03
0.03	0.03	0.03

Bank Sta: Left | Right | Lengths: Left Channel | Right | Coeff Contr. | Expan. |
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 | RS: 6

INPUT
Description:
Station Elevation Data | num= 50
<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>315.98</td>
<td>315.28</td>
<td>315.28</td>
<td>315.28</td>
<td>315.28</td>
</tr>
</tbody>
</table>

Manning's n Values | num= 3
Sta n Val	Sta n Val	Sta n Val
0.03	0.03	0.03
0.03	0.03	0.03
0.03	0.03	0.03
0.03	0.03	0.03
0.03	0.03	0.03

Bank Sta: Left | Right | Lengths: Left Channel | Right | Coeff Contr. | Expan. |
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 | RS: 5

INPUT
Description:
Station Elevation Data | num= 50
<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>315.98</td>
<td>315.28</td>
<td>315.28</td>
<td>315.28</td>
<td>315.28</td>
</tr>
</tbody>
</table>

Manning's n Values | num= 3
Sta n Val	Sta n Val	Sta n Val
0.03	0.03	0.03
0.03	0.03	0.03
0.03	0.03	0.03
0.03	0.03	0.03
0.03	0.03	0.03

Bank Sta: Left | Right | Lengths: Left Channel | Right | Coeff Contr. | Expan. |
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3
0.30106	115.8	145.6	175.18	.1	.3

CROSS SECTION
PRECHANNEL1.rep

RIVER: RIVER-1
REACH: Reach-1 RS: 4

INPUT

Description:
Station Elevation Data num= 50

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3144.04</td>
<td>7.71</td>
<td>3144.1</td>
<td>17.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.69</td>
<td>3143.11</td>
<td>48.41</td>
<td>3142.5</td>
<td>55.96</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.54</td>
<td>3140.46</td>
<td>102.23</td>
<td>3139.91</td>
<td>104.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.79</td>
<td>3140.67</td>
<td>132.57</td>
<td>3140.39</td>
<td>134.19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>145.81</td>
<td>3138.64</td>
<td>147.37</td>
<td>3137.56</td>
<td>147.93</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.47</td>
<td>3139.69</td>
<td>151.75</td>
<td>3138.05</td>
<td>153.06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>157.65</td>
<td>3140.87</td>
<td>158.72</td>
<td>3141.01</td>
<td>165.32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>188.83</td>
<td>3143.65</td>
<td>197.92</td>
<td>3144.11</td>
<td>207.98</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>216.68</td>
<td>3145.72</td>
<td>222.2</td>
<td>3146.27</td>
<td>234.45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>260.26</td>
<td>3146.99</td>
<td>273.37</td>
<td>3147.1</td>
<td>274.21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manning’s n Values num= 3</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank Sta: Left</th>
<th>Right</th>
<th>Lengths: Left Channel</th>
<th>Right</th>
<th>Coeff Contr.</th>
<th>Expan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>300</td>
<td>108.28</td>
<td>148.79</td>
<td>.1</td>
<td>.3</td>
</tr>
</tbody>
</table>

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 3

INPUT

Description:
Station Elevation Data num= 50

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3137.1</td>
<td>21.18</td>
<td>3136.99</td>
<td>42.31</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.6</td>
<td>3136.76</td>
<td>59.5</td>
<td>3136.58</td>
<td>72.68</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.98</td>
<td>3133.38</td>
<td>96.25</td>
<td>3132.87</td>
<td>105.21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>121.72</td>
<td>3133.71</td>
<td>131.72</td>
<td>3132.79</td>
<td>137.69</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>148.94</td>
<td>3131.51</td>
<td>150.08</td>
<td>3130.49</td>
<td>154.49</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>157.09</td>
<td>3131.58</td>
<td>158.62</td>
<td>3131.75</td>
<td>159.93</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>173.93</td>
<td>3132.8</td>
<td>177.69</td>
<td>3133.3</td>
<td>180.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>196.72</td>
<td>3134.2</td>
<td>206.46</td>
<td>3135.25</td>
<td>215.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>234.12</td>
<td>3137.33</td>
<td>238.8</td>
<td>3137.37</td>
<td>247.27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>253.13</td>
<td>3137.45</td>
<td>275.49</td>
<td>3137.23</td>
<td>286.52</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manning’s n Values num= 3</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank Sta: Left</th>
<th>Right</th>
<th>Lengths: Left Channel</th>
<th>Right</th>
<th>Coeff Contr.</th>
<th>Expan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>300</td>
<td>100</td>
<td>100</td>
<td>.1</td>
<td>.3</td>
</tr>
</tbody>
</table>

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 2

INPUT

Description:
Station Elevation Data num= 50

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3131.8</td>
<td>11.09</td>
<td>3131.54</td>
<td>22.87</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.53</td>
<td>3130.56</td>
<td>71.83</td>
<td>3130.35</td>
<td>85.43</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>108.32</td>
<td>3129.33</td>
<td>115.18</td>
<td>3129.9</td>
<td>116.13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>131.34</td>
<td>3128.15</td>
<td>135.19</td>
<td>3127.9</td>
<td>136.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>146.74</td>
<td>3126.45</td>
<td>152.37</td>
<td>3126.4</td>
<td>157.74</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>161.65</td>
<td>3127.8</td>
<td>172.01</td>
<td>3127.8</td>
<td>174.04</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>187.65</td>
<td>3129.19</td>
<td>197.74</td>
<td>3130.84</td>
<td>203.87</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>223.2</td>
<td>3132.2</td>
<td>226.62</td>
<td>3132.28</td>
<td>227.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manning’s n Values num= 3</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank Sta: Left</th>
<th>Right</th>
<th>Lengths: Left Channel</th>
<th>Right</th>
<th>Coeff Contr.</th>
<th>Expan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>300</td>
<td>100</td>
<td>100</td>
<td>.1</td>
<td>.3</td>
</tr>
</tbody>
</table>
CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 1

INPUT
Description:
Station Elevation Data num= 50
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 3124.5 6.12 3124.25 7.35 3124.3 11.98 3124.49 17.54 3124.5
23.3 3124.4 35.8 3124.31 40.17 3124.23 43.29 3124.2 49.21 3124
65.11 3123.54 71.26 3123.38 75.86 3123.3 80.36 3123.3 83.27 3123.23
110.03 3123.12 115.16 3123.06 121.68 3122.71 124.51 3122.73 132.64 3123
141.16 3123 143.64 3122.52 144.33 3122.34 144.98 3122 146.3 3121.87
152.82 3121.86 161.63 3122 174.05 3123 174.38 3123.18 175.15 3123.37
178.19 3124 185.65 3124.56 191.14 3125 196.13 3125.34 203.3 3126.2
208.05 3126.59 211.91 3126.94 222.8 3127.77 227.2 3128 227.47 3127.98
232.01 3127.98 243.69 3127.8 245.69 3127.84 252.54 3127.74 256.94 3127.7
263.85 3127.55 267.42 3127.49 287.72 3127 294.96 3126.81 300 3126.7

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .03 0 .03 300 .03

Bank Sta: Left 0 Right 3 Lengths: Left Channel 0 Right .1 Coeff Contr. Expan .3

SUMMARY OF MANNING'S N VALUES
River: RIVER-1

<table>
<thead>
<tr>
<th>Reach</th>
<th>River Sta.</th>
<th>n1</th>
<th>n2</th>
<th>n3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1 9</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Reach-1 8</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Reach-1 7</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Reach-1 6</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Reach-1 5</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Reach-1 4</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Reach-1 3</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Reach-1 2</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Reach-1 1</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF REACH LENGTHS
River: RIVER-1

<table>
<thead>
<tr>
<th>Reach</th>
<th>River Sta.</th>
<th>Left</th>
<th>Channel</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1 9</td>
<td>171.47</td>
<td>151.84</td>
<td>134.56</td>
<td></td>
</tr>
<tr>
<td>Reach-1 8</td>
<td>159.94</td>
<td>147.9</td>
<td>137.74</td>
<td></td>
</tr>
<tr>
<td>Reach-1 7</td>
<td>115.8</td>
<td>145.6</td>
<td>176.18</td>
<td></td>
</tr>
<tr>
<td>Reach-1 6</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Reach-1 5</td>
<td>187.61</td>
<td>149.01</td>
<td>110.45</td>
<td></td>
</tr>
<tr>
<td>Reach-1 4</td>
<td>108.28</td>
<td>148.79</td>
<td>189.32</td>
<td></td>
</tr>
<tr>
<td>Reach-1 3</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Reach-1 2</td>
<td>118.53</td>
<td>99.91</td>
<td>81.31</td>
<td></td>
</tr>
<tr>
<td>Reach-1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: RIVER-1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1 9</td>
<td>.1</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>Reach-1 8</td>
<td>.1</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>Reach-1 7</td>
<td>.1</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach</td>
<td>River Sta</td>
<td>Profile</td>
<td>Q Total (cfs)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>Reach-1</td>
<td>9</td>
<td>PF 1</td>
<td>361.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>PF 1</td>
<td>361.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>PF 1</td>
<td>361.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>PF 1</td>
<td>361.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>PF 1</td>
<td>361.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>PF 1</td>
<td>361.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>PF 1</td>
<td>361.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>PF 1</td>
<td>361.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>PF 1</td>
<td>361.00</td>
</tr>
</tbody>
</table>

Pre-Developed Channel-1, 100 yrs, 1 hr.
PROJECT DATA
Project Title: 07014
Project File: POSTCHANNEL1.prl
Run Date and Time: 3/7/2011 11:12:27 AM

Project in English units

Project Description:
****** Autodesk, Inc. HEC-2 Input Data file ******

Minimum Data Input **********

PLAN DATA

Plan Title: Imported Plan 01
Plan File: C:\POSTCHANNEL1.p01

Geometry Title: Imported Geom 01
Geometry File: C:\POSTCHANNEL1.g01

Flow Title: Imported Flow 01
Flow File: C:\POSTCHANNEL1.f01

Plan Summary Information:
Number of: Cross Sections = 8 Multiple Openings = 0
Culverts = 0 Inline Structures = 0
Bridges = 0 Lateral Structures = 0

Computational Information
Water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor = 0.001

Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow

FLOW DATA

Flow Title: Imported Flow 01
Flow File: C:\POSTCHANNEL1.f01

Flow Data (cfs)
River Reach RS PF 1
RIVER-1 Reach-1 8 361
Boundary Conditions

<table>
<thead>
<tr>
<th>River</th>
<th>Reach</th>
<th>Profile</th>
<th>Upstream</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVER-1</td>
<td>Reach-1</td>
<td>PF 1</td>
<td>Critical</td>
<td>Critical</td>
</tr>
</tbody>
</table>

GEOMETRY DATA

Geometry Title: Imported Geom 01
Geometry File: C:\POSTCHANNEL1.g01

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 8

INPUT Description:
Station Elevation Data
num= 50

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3172</td>
<td>28.44</td>
<td>3172.2</td>
<td>29.19</td>
</tr>
<tr>
<td>33.75</td>
<td>3172.16</td>
<td>40.25</td>
<td>3172.07</td>
<td>40.71</td>
</tr>
<tr>
<td>45.99</td>
<td>3172.23</td>
<td>46.88</td>
<td>3172.23</td>
<td>47.78</td>
</tr>
<tr>
<td>50.24</td>
<td>3172.48</td>
<td>51.78</td>
<td>3172.61</td>
<td>52.19</td>
</tr>
<tr>
<td>55.83</td>
<td>3172.82</td>
<td>56.54</td>
<td>3172.9</td>
<td>57.26</td>
</tr>
<tr>
<td>62.57</td>
<td>3172.62</td>
<td>64.72</td>
<td>3171.69</td>
<td>69.65</td>
</tr>
<tr>
<td>78.75</td>
<td>3169.91</td>
<td>80.25</td>
<td>3171.53</td>
<td>85.77</td>
</tr>
<tr>
<td>95.53</td>
<td>3173.4</td>
<td>96.38</td>
<td>3174.61</td>
<td>96.51</td>
</tr>
<tr>
<td>101.84</td>
<td>3177.34</td>
<td>103.65</td>
<td>3179.34</td>
<td>113.2</td>
</tr>
<tr>
<td>119.72</td>
<td>3179.56</td>
<td>121.25</td>
<td>3179.56</td>
<td>122.7</td>
</tr>
</tbody>
</table>

Manning's n Values
num= 3

<table>
<thead>
<tr>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.03</td>
<td>78.75</td>
<td>0.03</td>
</tr>
<tr>
<td>150</td>
<td>.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bank Sta: Left | Right
Lengths: Left Channel | Right Coeff Contr. Expan.
78.75 | 150 | 187.54 | 142.67 | 207.62 | .1 | .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 7

INPUT Description:
Station Elevation Data
num= 50

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3167</td>
<td>30.17</td>
<td>3167</td>
<td>34.44</td>
</tr>
<tr>
<td>45.31</td>
<td>3164.63</td>
<td>45.88</td>
<td>3164.5</td>
<td>47.96</td>
</tr>
<tr>
<td>58.31</td>
<td>3160</td>
<td>61.06</td>
<td>3160</td>
<td>68.2</td>
</tr>
<tr>
<td>73.83</td>
<td>3159.66</td>
<td>74.45</td>
<td>3159.7</td>
<td>75.38</td>
</tr>
<tr>
<td>81.01</td>
<td>3159.66</td>
<td>81.34</td>
<td>3159.7</td>
<td>88.84</td>
</tr>
<tr>
<td>94.33</td>
<td>3162</td>
<td>97.33</td>
<td>3164</td>
<td>99.45</td>
</tr>
<tr>
<td>110.45</td>
<td>3165</td>
<td>113.34</td>
<td>3165</td>
<td>113.89</td>
</tr>
<tr>
<td>126.65</td>
<td>3166</td>
<td>127.97</td>
<td>3166.08</td>
<td>129.46</td>
</tr>
<tr>
<td>133.63</td>
<td>3166.26</td>
<td>135.96</td>
<td>3166.33</td>
<td>136.44</td>
</tr>
<tr>
<td>143.63</td>
<td>3166.6</td>
<td>146.57</td>
<td>3166.75</td>
<td>146.91</td>
</tr>
</tbody>
</table>

Manning's n Values
num= 3

<table>
<thead>
<tr>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.03</td>
<td>75.38</td>
</tr>
<tr>
<td>150</td>
<td>.03</td>
<td></td>
</tr>
</tbody>
</table>

Bank Sta: Left | Right
Lengths: Left Channel | Right Coeff Contr. Expan.
75.38 | 150 | 149.98 | 150 | .02 | .1 | .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 6

INPUT Description:
CROSS SECTION

RIVER: RIVER-1

REACH: Reach-1

RS: 5

INPUT Description:

<table>
<thead>
<tr>
<th>Station Elevation Data</th>
<th>num= 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta Elev</td>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
</tr>
<tr>
<td>0 3161.3 27.26 3160 6.54 3158.5 7.73 3158 15.24 3155</td>
<td></td>
</tr>
<tr>
<td>16.43 3154.5 17.74 3154 25.23 3151 25.83 3150.8 27.39 3150.13</td>
<td></td>
</tr>
<tr>
<td>29.44 3149.32 35.22 3147 38.73 3146.71 50.88 3146 51.78 3146</td>
<td></td>
</tr>
<tr>
<td>54.61 3144.1 57.78 3142 59.32 3141.7 60.98 3141.54 62.46 3141.5</td>
<td></td>
</tr>
<tr>
<td>62.73 3141.44 64.95 3141.39 65.4 3141.35 69.9 3141.18 75.55 3141.18</td>
<td></td>
</tr>
<tr>
<td>75.59 3141.18 83.54 3141.33 86.27 3141.41 87.23 3141.53</td>
<td></td>
</tr>
<tr>
<td>88.26 3141.51 89.85 3141.67 90.63 3141.7 92.24 3142 95.24 3144</td>
<td></td>
</tr>
<tr>
<td>95.91 3144.4 96.74 3145 98.24 3146 99.43 3146 107.54 3146.35</td>
<td></td>
</tr>
<tr>
<td>108.39 3146.37 118.59 3146.3 125.19 3146.07 126.18 3146 128.29 3145.97</td>
<td></td>
</tr>
<tr>
<td>134.32 3145.77 137.76 3145.72 137.6 3145.7 138.22 3145.64 150 3145.24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manning's n Values</th>
<th>num= 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta n Val Sta n Val Sta n Val</td>
<td></td>
</tr>
<tr>
<td>0 75.55 0.3 150 0.3</td>
<td></td>
</tr>
</tbody>
</table>

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

| 75.55 150 | 130.4 149.04 167.74 | .1 .3 |

CROSS SECTION
RIVER: RIVER-1
REACH: Reach-1 RS: 3

INPUT
Description:
Station Elevation Data num= 50
Sta E Elev Sta E Elev Sta E Elev Sta E Elev Sta E Elev
 0 3132 9.75 3153.34 16.51 3150 18.05 3149.2 19.25 3148.65
26.64 3145 28.4 3144.1 28.66 3144 35.3 3140.72 35.71 3140.66
36.37 3140.4 37.55 3140.23 39.82 3140 40.49 3140 41.62 3139.9
42.94 3139.88 44.36 3139.81 45.78 3139.7 47.2 3139.64 48.62 3139.53
49.43 3139.4 50.03 3139.39 51.45 3139.22 52.83 3139 58.85 3135
66.45 3135 71.45 3134.8 71.62 3134.82 75.23 3134.82 80.12 3134.83
80.9 3134.8 84.82 3135 91.52 3135 92.97 3135.97 93.08 3136
94.51 3137 97.5 3139 98.54 3139.04 99.02 3139.39 99.67 3139.6
100.45 3139.62 101.86 3139.79 104.61 3140 111.16 3140.15 116.88 3140.21
121.66 3140.2 127.22 3140.13 136.68 3139.93 141.56 3139.85 150.18 3139.74

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
 0 .03 75.23 .03 150.18 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
75.23 150.18 182.3 141.07 111.89 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 2

INPUT
Description:
Station Elevation Data num= 50
Sta E Elev Sta E Elev Sta E Elev Sta E Elev Sta E Elev
 0 3132 5.35 3132.68 5.98 3132.8 7.84 3133 10.67 3133
13.29 3133.05 14.09 3133 21.78 3133 25.91 3130 30.39 3129
36.43 3129 46.29 3128.58 47.98 3128.6 53.94 3128.65 59.72 3128.62
67.09 3128.63 74.19 3128.65 74.83 3128.7 75.79 3128.66 81.12 3129
87.62 3129 89.58 3129.2 90.94 3129.3 94.09 3129.6 101.7 3130.28
103.23 3130.4 106.61 3130.8 107.63 3131 109.88 3131.35 110.54 3131.4
112.77 3131.7 117.78 3131.72 117.07 3131.91 119.27 3132 126.69 3132
130.83 3132.65 139.98 3133.1 146.12 3133.39 148.09 3133.52 153.71 3134
158.69 3134.5 159.85 3134.52 161.04 3134.7 165.45 3134.87 173.91 3134.8
175.74 3134.76 192.12 3134.5 204.79 3134.25 213.29 3134.06 214.98 3134.01

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
 0 .03 21.78 .03 214.98 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
21.78 214.98 184.39 150.31 125.15 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 1

INPUT
Description:
Station Elevation Data num= 50
Sta E Elev Sta E Elev Sta E Elev Sta E Elev Sta E Elev
 0 3124.3 3.44 3124.2 9.3 3124.4 14.18 3124.47 20 3124.42
27.61 3124.34 34.87 3124.3 46.14 3124.07 57.6 3123.74 69.49 3123.43
76.5 3123.3 84.14 3123.25 89.99 3123.23 90.96 3123.2 100.95 3123.2
111.36 3123.15 117.46 3123 120.99 3122.85 121.12 3122.9 128.84 3123
141.46 3122.3 142.86 3122.44 146.27 3122 150.03 3122 157.22 3122
160.29 3122.07 163.99 3122.21 167.27 3122.42 169.71 3122.62 170.28 3122.6
173.67 3123 176.71 3124 181.28 3124.34 196.14 3125.5 201.39 3126
208.03 3126.76 212.91 3127.2 214.88 3127.32 222.41 3128 232.16 3128
236.43 3128.1 242.86 3128.07 250.57 3128.01 265.65 3127.73 276.89 3127.47
279.08 3127.4 284.53 3127.3 299.77 3127.16 299.55 3126.97 300 3127

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
 0 .03 150.03 .03 300 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
Page 4
SUMMARY OF MANNING'S N VALUES

River: RIVER-1

<table>
<thead>
<tr>
<th>Reach</th>
<th>River Sta.</th>
<th>n1</th>
<th>n2</th>
<th>n3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
</tbody>
</table>

SUMMARY OF REACH LENGTHS

River: RIVER-1

<table>
<thead>
<tr>
<th>Reach</th>
<th>River Sta.</th>
<th>Left</th>
<th>Channel</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>187.54</td>
<td>142.67</td>
<td>207.62</td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>149.98</td>
<td>150</td>
<td>150.02</td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>114.49</td>
<td>148.63</td>
<td>182.83</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>102.2</td>
<td>146.69</td>
<td>191.19</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>130.4</td>
<td>149.04</td>
<td>167.74</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>182.3</td>
<td>141.07</td>
<td>111.89</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>184.39</td>
<td>150.31</td>
<td>125.15</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS

River: RIVER-1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach</td>
<td>River Sta</td>
<td>Profile</td>
<td>Q Total (cfs)</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>Reach-1 7</td>
<td>PF 1</td>
<td>361.00</td>
<td>3169.91</td>
</tr>
<tr>
<td>Reach-1 6</td>
<td>PF 1</td>
<td>361.00</td>
<td>3159.66</td>
</tr>
<tr>
<td>Reach-1 5</td>
<td>PF 1</td>
<td>361.00</td>
<td>3152.20</td>
</tr>
<tr>
<td>Reach-1 4</td>
<td>PF 1</td>
<td>361.00</td>
<td>3141.18</td>
</tr>
<tr>
<td>Reach-1 3</td>
<td>PF 1</td>
<td>361.00</td>
<td>3134.80</td>
</tr>
<tr>
<td>Reach-1 2</td>
<td>PF 1</td>
<td>361.00</td>
<td>3128.58</td>
</tr>
<tr>
<td>Reach-1 1</td>
<td>PF 1</td>
<td>361.00</td>
<td>3122.00</td>
</tr>
</tbody>
</table>

Post-developed channel-1, 100 yrs 1 hr.
ITEM-2 Storm Water Channel Analysis Backup Data
For Channel-2
“Offsite-2”, Pre Development Rational Method Analysis
San Bernardino County Rational Hydrology Program
(Hydrology Manual Date = August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2004 Version 7.0
Rational Hydrology Study Date: 03/08/11

PREDEV OFFSITE 2
TR 18255
RATIONAL METHOD
Q100 1HR

Program License Serial Number 4004

******************************** Hydrology Study Control Information **************************

Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.300 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3

+---+
| Process from Point/Station | 1.000 to Point/Station | 2.000 |
+---+

**** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077 (In/Hr)

Initial subarea data:
Initial area flow distance = 652.310 (Ft.)
Top (of initial area) elevation = 4468.000 (Ft.)
Bottom (of initial area) elevation = 4260.000 (Ft.)
Difference in elevation = 188.000 (Ft.)
Slope = 0.28821 s(%) = 28.82
TC = k(0.525)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.995 min.
Rainfall intensity = 4.907 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=RC1A) is C = 0.886
Subarea runoff = 42.953 (CFS)
Total initial stream area = 9.880 (Ac.)
Pervious area fraction = 1.000
Pervious area Fm value = 0.077 (In/Hr)

+---+
| Process from Point/Station | 2.000 to Point/Station | 3.000 |
+---+

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.320 (Ft.), Average velocity = 4.947 (Ft/s)
!!Warning: Water is above left or right bank elevations

******** Irregular Channel Data **********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
 1 0.00 0.00
 2 764.00 5.00
 3 1528.00 0.00

Manning's 'N' friction factor = 0.030

Sub-Channel flow = 77.201 (CFS)
 flow top width = 97.665 (Ft.)
 velocity = 4.947 (Ft/s)
 area = 15.606 (Sq.Ft)
 Froude number = 2.181
Upstream point elevation = 4280.000(Ft.)
Downstream point elevation = 4220.000(Ft.)
Flow length = 521.610(Ft.)
Travel time = 1.76 min.
Time of concentration = 10.75 min.
Depth of flow = 0.320(Ft.)
Average velocity = 4.947(Ft/s)
Total irregular channel flow = 77.201(CFS)
Irregular channel normal depth above invert elev. = 0.320(Ft.)
Average velocity of channel(s) = 4.947(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000
Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 4.331(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCl)+ is C = 0.884
Subarea runoff = 68.428(CFS) for 19.210(Ac.)
Total runoff = 111.381(CFS)
Effective area this stream = 29.09(Ac.)
Total Study Area (Main Stream No. 1) = 29.09(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.367(Ft.), Average velocity = 5.422(Ft/s)
!!Warning: Water is above left or right bank elevations

Process from Point/Station 3.000 to Point/Station 4.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.331(Ft.), Average velocity = 7.121(Ft/s)
!!Warning: Water is above left or right bank elevations

******* Irregular Channel Data **********

Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 912.00 0.00
3 1824.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 142.020(CFS)
 ' flow top width = 120.629(Ft.)
 ' velocity= 7.121(Ft/s)
 ' area = 19.944(Sq.Ft)
 ' Froude number = 3.086

Upstream point elevation = 4220.000(Ft.)
Downstream point elevation = 4120.000(Ft.)
Flow length = 439.080(Ft.)
Travel time = 1.03 min.
Time of concentration = 11.78 min.
Depth of flow = 0.331(Ft.)
Average velocity = 7.121(Ft/s)
Total irregular channel flow = 142.019(CFS)
Irregular channel normal depth above invert elev. = 0.331(Ft.)
Average velocity of channel(s) = 7.121(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077 (In/Hr)
Rainfall intensity = 4.063 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.883
Subarea runoff = 61.180 (CFS) for 19.010 (Ac.)
Total runoff = 172.561 (CFS)
Effective area this stream = 48.10 (Ac.)
Total Study Area (Main Stream No. 1) = 48.10 (Ac.)
Area averaged Fm value = 0.077 (In/Hr)
Depth of flow = 0.356 (Ft.), Average velocity = 7.476 (Ft/s)
!!Warning: Water is above left or right bank elevations

+--+
Process from Point/Station 4.000 to Point/Station 5.000
+--+
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.328 (Ft.), Average velocity = 9.813 (Ft/s)
!!Warning: Water is above left or right bank elevations

+--+
Information entered for subchannel number 1
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 955.50 5.00
3 1911.00 0.00
Manning's 'N' friction factor = 0.030
+--+
Sub-Channel flow = 201.421 (CFS)
 ' flow top width = 125.262 (Ft.)
 ' velocity = 9.813 (Ft/s)
 ' area = 20.527 (Sq.Ft)
 ' Froude number = 4.272
Upstream point elevation = 4120.00 (Ft.)
Downstream point elevation = 3925.00 (Ft.)
Flow length = 445.570 (Ft.)
Travel time = 0.76 min.
Time of concentration = 12.54 min.
Depth of flow = 0.328 (Ft.)
Average velocity = 9.813 (Ft/s)
Total irregular channel flow = 201.419 (CFS)
Irregular channel normal depth above invert elev. = 0.328 (Ft.)
Average velocity of channel(s) = 9.813 (Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 63.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077 (In/Hr)
Rainfall intensity = 3.890 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=KCIA) is C = 0.882
Subarea runoff = 57.630 (CFS) for 18.980 (Ac.)
Total runoff = 230.191 (CFS)
Effective area this stream = 67.08 (Ac.)
Total Study Area (Main Stream No. 1) = 67.08 (Ac.)
Area averaged Fm value = 0.077 (In/Hr)
Depth of flow = 0.345 (Ft.), Average velocity = 10.146 (Ft/s)
!!Warning: Water is above left or right bank elevations

+--+
Process from Point/Station 5.000 to Point/Station 6.000
+--+
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.350(Ft.), Average velocity = 10.750(Ft/s)

!!Warning: Water is above left or right bank elevations

***** Irregular Channel Data ************

Information entered for subchannel number 1:

Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 972.50 5.00
3 1945.00 0.00

Manning's 'N' friction factor = 0.030

Sub-Channel flow = 255.786(CFS)

' flow top width = 136.055(Ft.)
' velocity = 10.750(Ft/s)
' area = 23.793(Sq.Ft)
' Froude number = 4.530

Upstream point elevation = 3925.000(Ft.)
Downstream point elevation = 3666.000(Ft.)
Flow length = 537.710(Ft.)
Travel time = 0.83 min.
Time of concentration = 13.37 min.

Depth of flow = 0.350(Ft.)
Average velocity = 10.750(Ft/s)
Total irregular channel flow = 255.786(CFS)
Irregular channel normal depth above invert elev. = 0.350(Ft.)
Average velocity of channel(s) = 10.750(Ft/s)

!!Warning: Water is above left or right bank elevations
Adding area flow to channel

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500

Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500

SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
PerVIOUS ratio(Ap) = 1.0000
Max loss rate(Fm)= 0.077(In/Hr)
Rainfall intensity = 3.718(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=KCIA) is C = 0.881
Subarea runoff = 51.136(CFS) for 18.760(Ac.)
Total runoff = 281.327(CFS)
Effective area this stream = 85.84(Ac.)
Total Study Area (Main Stream No. 1) = 85.84(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.362(Ft.), Average velocity = 11.009(Ft/s)

!!Warning: Water is above left or right bank elevations

++

Process from Point/Station 6.000 to Point/Station 7.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)

Depth of flow = 0.449(Ft.), Average velocity = 7.561(Ft/s)

!!Warning: Water is above left or right bank elevations

***** Irregular Channel Data ************

Information entered for subchannel number 1:

Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 1082.50 5.00
3 1999.99 0.00

Manning's 'N' friction factor = 0.030

Sub-Channel flow = 304.979(CFS)

' flow top width = 179.632(Ft.)
' velocity = 7.561(Ft/s)
' area = 40.335(Sq.Ft)
' Froude number = 2.812
Upstream point elevation = 3666.000(Ft.)
Downstream point elevation = 3603.000(Ft.)
Flow length = 368.990 (Ft.)
Travel time = 0.81 min.
Time of concentration = 14.18 min.
Depth of flow = 0.449 (Ft.)
Average velocity = 7.561 (Ft/s)
Total irregular channel flow = 304.978 (CFS)
Irregular channel normal depth above invert elev. = 0.449 (Ft.)
Average velocity of channel(s) = 7.561 (Ft/s)

!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077 (In/Hr)
Rainfall intensity = 3.568 (In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=RCIA) is C = 0.681
Subarea runoff = 47.245 (CFS) for 18.740 (Ac.)
Total runoff = 328.572 (CFS)
Effective area this stream = 104.58 (Ac.)
Total Study Area (Main Stream No. 1) = 104.58 (Ac.)
Area averaged Fm value = 0.077 (In/Hr)
Depth of flow = 0.462 (Ft.), Average velocity = 7.703 (Ft/s)

!!Warning: Water is above left or right bank elevations

**
Process from Point/Station 7.000 to Point/Station 8.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000 (CFS)
Depth of flow = 0.524 (Ft.), Average velocity = 6.354 (Ft/s)

!!Warning: Water is above left or right bank elevations

******** Irregular Channel Data ********

--
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 1000.00 5.00
3 1999.99 0.00
Manning's 'N' friction factor = 0.030
--
Sub-Channel flow = 348.618 (CFS)
' ' flow top width = 209.510 (Ft.)
' ' velocity= 6.354 (Ft/s)
' ' area = 54.868 (Sq.Ft)
' ' Froude number = 2.188

Upstream point elevation = 3603.000 (Ft.)
Downstream point elevation = 3566.000 (Ft.)
Flow length = 376.780 (Ft.)
Travel time = 0.99 min.
Time of concentration = 15.17 min.
Depth of flow = 0.524 (Ft.)
Average velocity = 6.354 (Ft/s)
Total irregular channel flow = 348.615 (CFS)
Irregular channel normal depth above invert elev. = 0.524 (Ft.)
Average velocity of channel(s) = 6.354 (Ft/s)

!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077 (In/Hr)
Rainfall intensity = 3.403(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=RCIA) is C = 0.880
Subarea runoff = 40.011(CFS) for 18.530(Ac.)
Total runoff = 368.583(CFS)
Effective area this stream = 123.11(Ac.)
Total Study Area (Main Stream No. 1) = 123.11(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.535(Ft.), Average velocity = 6.443(Ft/s)
!!Warning: Water is above left or right bank elevations

Process from Point/Station 8.000 to Point/Station 9.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.525(Ft.), Average velocity = 7.043(Ft/s)
!!Warning: Water is above left or right bank elevations

**** Irregular Channel Data ********

Information entered for subchannel number 1:

Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 1000.00 5.00
3 1999.99 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 388.896(CFS)
 ' ' flow top width = 210.182(Ft.)
 ' ' velocity = 7.043(Ft/s)
 ' ' area = 55.221(Sq.Ft.)
 ' ' Froude number = 2.421

Upstream point elevation = 3566.000(Ft.)
Downstream point elevation = 3527.000(Ft.)
Flow length = 324.640(Ft.)
Travel time = 0.77 min.
Time of concentration = 15.94 min.
Depth of flow = 0.525(Ft.)
Average velocity = 7.043(Ft/s)
Total irregular channel flow = 388.893(CFS)
Irregular channel normal depth above invert elev. = 0.525(Ft.)
Average velocity of channel(s) = 7.043(Ft/s)
!!Warning: Water is above left or right bank elevations

Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077(In/Hr)
Rainfall intensity = 3.288(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) (Q=RCIA) is C = 0.879
Subarea runoff = 40.559(CFS) for 18.470(Ac.)
Total runoff = 409.142(CFS)
Effective area this stream = 141.58(Ac.)
Total Study Area (Main Stream No. 1) = 141.58(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.536(Ft.), Average velocity = 7.132(Ft/s)
!!Warning: Water is above left or right bank elevations

Process from Point/Station 9.000 to Point/Station 10.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.603(Ft.), Average velocity = 5.845(Ft/s)
!!Warning: Water is above left or right bank elevations
Irregular Channel Data

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 1000.00 5.00
3 1999.99 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 424.785(CFS)
 ' flow top width = 241.121(Ft.)
 ' velocity= 5.845(Ft/s)
 ' area = 72.675(Sq.Ft)
 ' Froude number = 1.876
Upstream point elevation = 3527.000(Ft.)
Downstream point elevation = 3500.000(Ft.)
Flow length = 391.840(Ft.)
Travel time = 1.12 min.
Time of concentration = 17.06 min.
Depth of flow = 0.603(Ft.)
Average velocity = 5.845(Ft/s)
Total irregular channel flow = 424.784(CFS)
Irregular channel normal depth above invert elev. = 0.603(Ft.)
Average velocity of channel(s) = 5.845(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 3.135(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.878
Subarea runoff = 31.194(CFS) for 18.380(Ac.)
Total runoff = 440.336(CFS)
Effective area this stream = 159.96(Ac.)
Total Study Area (Main Stream No. 1) = 159.96(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.611(Ft.), Average velocity = 5.898(Ft/s)
!!Warning: Water is above left or right bank elevations

+++
Process from Point/Station 10.000 to Point/Station 11.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.663(Ft.), Average velocity = 6.611(Ft/s)
!!Warning: Water is above left or right bank elevations

Irregular Channel Data

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 775.00 5.00
3 1550.00 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 449.942(CFS)
 ' flow top width = 205.420(Ft.)
 ' velocity= 6.611(Ft/s)
 ' area = 68.060(Sq.Ft)
 ' Froude number = 2.024
Upstream point elevation = 3500.000(Ft.)
Downstream point elevation = 3450.000(Ft.)
Flow length = 643.520(Ft.)
Travel time = 1.62 min.
Time of concentration = 18.68 min.
Depth of flow = 0.663(Ft.)
Average velocity = 6.611(Ft/s)
Total irregular channel flow = 449.942(CFS)
Irregular channel normal depth above invert elev. = 0.663(Ft.)
Average velocity of channel(s) = 6.611(Ft/s)

!!Warning: Water is above left or right bank elevations

Adding area flow to channel

UNDEVELOPED (poor cover) subarea

Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500

SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10

Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 2.942(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area,(total area with modified rational method) (Q=KCTA) is C = 0.877
Subarea runoff = 19.148(CFS) for 18.210(Ac.)
Total runoff = 459.483(CFS)
Effective area this stream = 178.17(Ac.)
Total Study Area (Main Stream No. 1) = 178.17(Ac.)
Area averaged Fm value = 0.077(In/Hr)

Depth of flow = 0.668(Ft.), Average velocity = 6.646(Ft/s)

!!Warning: Water is above left or right bank elevations

##

Process from Point/Station 11.000 to Point/Station 12.000

**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)

Depth of flow = 0.750(Ft.), Average velocity = 6.984(Ft/s)

!!Warning: Water is above left or right bank elevations

****** Irregular Channel Data **********

Information entered for subchannel number 1:

Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 595.50 5.00
3 1191.00 0.00

Manning's 'N' friction factor = 0.030

--

Sub-Channel flow = 468.201(CFS)

' ' flow top width = 178.707(Ft.)
' ' velocity = 6.984(Ft/s)
' ' area = 67.037(Sq.Ft)
' ' Froude number = 2.010

Upstream point elevation = 3450.000(Ft.)
Downstream point elevation = 3400.000(Ft.)
Flow length = 680.350(Ft.)
Travel time = 1.62 min.
Time of concentration = 20.30 min.
Depth of flow = 0.750(Ft.)
Average velocity = 6.984(Ft/s)
Total irregular channel flow = 468.199(CFS)
Irregular channel normal depth above invert elev. = 0.750(Ft.)
Average velocity of channel(s) = 6.984(Ft/s)

!!Warning: Water is above left or right bank elevations

Adding area flow to channel

UNDEVELOPED (poor cover) subarea

Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500

SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10

Pervious ratio(Ap) = 1.0000 Max loss rate(Fm) = 0.077(In/Hr)
Rainfall intensity = 2.776(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area,(total area with modified
rational method)\(Q=KCIA\) is \(C = 0.875\)
Subarea runoff = 17.371(CFS) for 18.160(Ac.)
Total runoff = 476.854(CFS)
Effective area this stream = 196.33(Ac.)
Total Study Area (Main Stream No. 1) = 196.33(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.755(Ft.), Average velocity = 7.016(Ft/s)
!!Warning: Water is above left or right bank elevations

+++
Process from Point/Station 12.000 to Point/Station 13.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.821(Ft.), Average velocity = 7.160(Ft/s)
!!Warning: Water is above left or right bank elevations

******* Irregular Channel Data ***********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 499.75 5.00
3 999.50 0.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 481.785(CFS)
' flow top width = 164.020(Ft.)
' velocity = 7.160(Ft/s)
' area = 67.290(Sq.Ft)
' Froude number = 1.970

Upstream point elevation = 3400.000(Ft.)
Downstream point elevation = 3341.000(Ft.)
Flow length = 860.770(Ft.)
Travel time = 2.00 min.
Time of concentration = 22.31 min.
Depth of flow = 0.821(Ft.)
Average velocity = 7.160(Ft/s)
Total irregular channel flow = 481.784(CFS)
Irregular channel normal depth above invert elev. = 0.821(Ft.)
Average velocity of channel(s) = 7.160(Ft/s)
!!Warning: Water is above left or right bank elevations
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil(AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077(In/Hr)
Rainfall intensity = 2.599(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)\(Q=KCIA\) is \(C = 0.873\)
Subarea runoff = 9.788(CFS) for 18.090(Ac.)
Total runoff = 486.642(CFS)
Effective area this stream = 214.42(Ac.)
Total Study Area (Main Stream No. 1) = 214.42(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.824(Ft.), Average velocity = 7.178(Ft/s)
!!Warning: Water is above left or right bank elevations

+++
Process from Point/Station 13.000 to Point/Station 14.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.873(Ft.), Average velocity = 7.507(Ft/s)
!!Warning: Water is above left or right bank elevations

******* Irregular Channel Data ***********
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 429.00 5.00
3 858.00 3.00
Manning's 'N' friction factor = 0.030

Sub-Channel flow = 490.520(CFS)
 ' ' flow top width = 149.748(Ft.)
 ' ' velocity= 7.507(Ft/s)
 ' ' area = 65.340(Sq.Ft)
 ' ' Froude number = 2.003

Upstream point elevation = 3341.000(Ft.)
Downstream point elevation = 3275.000(Ft.)
Flow length = 950.810(Ft.)
Travel time = 2.11 min.
Time of concentration = 24.42 min.
Depth of flow = 0.873(Ft.)
Average velocity = 7.507(Ft/s)
Total irregular channel flow = 490.520(CFS)
Irregular channel normal depth above invert elev. = 0.873(Ft.)
Average velocity of channel(s) = 7.507(Ft/s)
!!Warning: Water is above left or right bank elevations

Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500
SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.077(In/Hr)
Rainfall intensity = 2.439(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified rational method)(Q=RCIA) is C = 0.872
Subarea runoff = 7.687(CFS) for 18.080(Ac.)
Total runoff = 494.329(CFS)
Effective area this stream = 232.50(Ac.)
Total Study Area (Main Stream No. 1) = 232.50(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.875(Ft.), Average velocity = 7.522(Ft/s)
!!Warning: Water is above left or right bank elevations

+---+
| Process from Point/Station 14.000 to Point/Station 15.000 |
| **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** |
+---+

Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.898(Ft.), Average velocity = 7.187(Ft/s)
!!Warning: Water is above left or right bank elevations

+---+
| Information entered for subchannel number 1: |
| Point number 'X' coordinate 'Y' coordinate |
| 1 0.00 0.00 |
| 2 429.00 5.00 |
| 3 858.00 3.00 |
| Manning's 'N' friction factor = 0.030 |
+---+
| Sub-Channel flow = 496.907(CFS) |
| ' ' flow top width = 154.039(Ft.) |
| ' ' velocity= 7.187(Ft/s) |
| ' ' area = 69.138(Sq.Ft) |
| ' ' Froude number = 1.891 |
+---+
Upstream point elevation = 3275.000(Ft.)
Downstream point elevation = 3229.000(Ft.)
Flow length = 750.770(Ft.)
Travel time = 1.74 min.
Time of concentration = 26.16 min.
Depth of flow = 0.898(Ft.)
Average velocity = 7.187(Ft/s)
Total irregular channel flow = 496.908(CFS)
Irregular channel normal depth above invert elev. = 0.898(Ft.)
Average velocity of channel(s) = 7.187(Ft/s)

!! Warning: Water is above left or right bank elevations

Adding area flow to channel

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.510

SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10

R pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077(In/Hr)
Rainfall intensity = 2.324(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area (total area with modified rational method) (Q=KCl) is C = 0.870

Subarea runoff = 5.106(CFS) for 14.400(Ac.)

Total runoff = 499.434(CFS)

Effective area this stream = 246.90(Ac.)

Total Study Area (Main Stream No. 1) = 246.90(Ac.)

Area averaged Fm value = 0.077(In/Hr)

Depth of flow = 0.899(Ft.), Average velocity = 7.196(Ft/s)

!! Warning: Water is above left or right bank elevations

****** IRREGULAR CHANNEL FLOW TRAVEL TIME ****

Estimated mean flow rate at midpoint of channel = 0.000(CFS)

Depth of flow = 0.884(Ft.), Average velocity = 6.585(Ft/s)

!! Warning: Water is above left or right bank elevations

****** Irregular Channel Data **********

Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
1 0.00 0.00
2 489.00 5.00
3 978.00 0.00

Manning's 'N' friction factor = 0.030

Sub-Channel flow = 503.078(CFS)

' ' flow top width = 172.883(Ft.)
' ' velocity = 6.585(Ft/s)
' ' area = 76.402(Sq.Ft)
' ' Froude number = 1.746

Upstream point elevation = 3229.000(Ft.)
Downstream point elevation = 3200.000(Ft.)
Flow length = 552.390(Ft.)
Travel time = 1.40 min.
Time of concentration = 27.56 min.

Depth of flow = 0.884(Ft.)
Average velocity = 6.585(Ft/s)
Total irregular channel flow = 503.078(CFS)
Irregular channel normal depth above invert elev. = 0.884(Ft.)
Average velocity of channel(s) = 6.585(Ft/s)

!! Warning: Water is above left or right bank elevations

Adding area flow to channel

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.500
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.500

SCS curve number for soil (AMC 2) = 83.50
Adjusted SCS curve number for AMC 3 = 96.10

Pervious ratio (Ap) = 1.0000 Max loss rate (Fm) = 0.077(In/Hr)
Rainfall intensity = 2.241(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area (total area with modified rational method) (Q=KCl) is C = 0.869
Subarea runoff = 7.206(CFS) for 13.190(Ac.)
Total runoff = 506.641(CFS)
Effective area this stream = 260.09(Ac.)
Total Study Area (Main Stream No. 1) = 260.09(Ac.)
Area averaged Fm value = 0.077(In/Hr)
Depth of flow = 0.886(Ft.), Average velocity = 6.596(Ft/s)
!!Warning: Water is above left or right bank elevations

+---
Process from Point/Station 15.000 to Point/Station 16.000
+---

**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 260.090(Ac.)
Runoff from this stream = 506.641(CFS)
Time of concentration = 27.56 min.
Rainfall intensity = 2.241(In/Hr)
Area averaged loss rate (Fm) = 0.0768(In/Hr)
Area averaged Pervious ratio (Ap) = 1.0000
Summary of stream data:

<table>
<thead>
<tr>
<th>Stream No.</th>
<th>Area (Ac.)</th>
<th>Flow rate (CFS)</th>
<th>TC (min)</th>
<th>Fm (In/Hr)</th>
<th>Rainfall Intensity (In/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>506.64</td>
<td>260.090</td>
<td>27.56</td>
<td>0.077</td>
<td>2.241</td>
</tr>
</tbody>
</table>

Qmax(1) = 1.000 * 1.000 * 506.641 + = 506.641

Total of 1 streams to confluence:
Flow rates before confluence point:
506.641
Maximum flow rates at confluence using above data:
506.641
Area of streams before confluence:
260.090
Effective area values after confluence:
260.090
Results of confluence:
Total flow rate = 506.641(CFS)
Time of concentration = 27.557 min.
Effective stream area after confluence = 260.090(Ac.)
Study area average Pervious fraction (Ap) = 1.000
Study area average soil loss rate (Fm) = 0.077(In/Hr)
Study area total (this main stream) = 260.09(Ac.)
End of computations, Total Study Area = 260.09 (Ac.)
The following figures may be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction (Ap) = 1.000
Area averaged SCS curve number = 83.5
Hecras Analysis
Channel “2”
Pre and Post Analysis
Project in English units

PROJECT DATA

Project Title: 07014
Project File: PRECHANNEL2.prj
Run Date and Time: 3/7/2011 5:20:42 PM

PLAN DATA

Plan Title: Imported Plan 01
Plan File: C:\PRECHANNEL2.p01

Geometry Title: Imported Geom 01
Geometry File: C:\PRECHANNEL2.g01

Flow Title: Imported Flow 01
Flow File: C:\PRECHANNEL2.f01

Plan Summary Information

Number of Cross Sections = 11 Multiple Openings = 0
Culverts = 0 Inline Structures = 0 Bridges = 0 Lateral Structures = 0

Computational Information

Water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor = 0.001

Computation Options

Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow

FLOW DATA

Flow Title: Imported Flow 01
Flow File: C:\PRECHANNEL2.f01

Flow Data (cfs)

<table>
<thead>
<tr>
<th>River</th>
<th>Reach</th>
<th>RS</th>
<th>PF 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVER-1</td>
<td>Reach-1</td>
<td>11</td>
<td>760</td>
</tr>
</tbody>
</table>
Boundary Conditions

River	**Reach**	**Profile**	**Upstream**	**Downstream**
RIVER-1 | Reach-1 | PF 1 | Critical |

GEOMETRY DATA

Geometry Title: Imported Geom 01
Geometry File: C:\PRECHANNEL2.g01

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 11

INPUT
Description:

<table>
<thead>
<tr>
<th>Station Elevation Data</th>
<th>num= 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta Elev</td>
<td>Sta Elev</td>
</tr>
<tr>
<td>0 3207.9</td>
<td>1.48 3207.9</td>
</tr>
<tr>
<td>25.83 3207</td>
<td>31.29 3206.1</td>
</tr>
<tr>
<td>50.22 3206</td>
<td>56.68 3206</td>
</tr>
<tr>
<td>69.05 3205.98</td>
<td>71.87 3206</td>
</tr>
<tr>
<td>88.46 3206</td>
<td>96.49 3206</td>
</tr>
<tr>
<td>109.28 3206</td>
<td>109.5 3206.06</td>
</tr>
<tr>
<td>132.59 3206</td>
<td>144.8 3206</td>
</tr>
<tr>
<td>163.09 3206</td>
<td>164.69 3206</td>
</tr>
<tr>
<td>178.22 3206</td>
<td>179.5 3206.62</td>
</tr>
<tr>
<td>191.28 3207</td>
<td>37.37 199.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manning's n Values</th>
<th>num= 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta n Val</td>
<td>Sta n Val</td>
</tr>
<tr>
<td>0</td>
<td>0.03 108.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank Sta: Left</th>
<th>Right</th>
<th>Lengths: Left Channel</th>
<th>Right</th>
<th>Coeff Contr.</th>
<th>Expan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>108.65</td>
<td>216.16</td>
<td>125.36</td>
<td>108.36</td>
<td>106.47</td>
<td>.1</td>
</tr>
</tbody>
</table>

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 10

INPUT
Description:

<table>
<thead>
<tr>
<th>Station Elevation Data</th>
<th>num= 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta Elev</td>
<td>Sta Elev</td>
</tr>
<tr>
<td>0 3201.6</td>
<td>7.06 3202</td>
</tr>
<tr>
<td>19.78 3202.4</td>
<td>24.47 3202.49</td>
</tr>
<tr>
<td>53.9 3202</td>
<td>56.05 3202</td>
</tr>
<tr>
<td>91.53 3201</td>
<td>96.23 3200.74</td>
</tr>
<tr>
<td>118.68 3199</td>
<td>122.1 3199.56</td>
</tr>
<tr>
<td>143.58 3199</td>
<td>234.7 3199.88</td>
</tr>
<tr>
<td>171.88 3199</td>
<td>274.56 3199</td>
</tr>
<tr>
<td>210.41 3200.69</td>
<td>215.31 3200.9</td>
</tr>
<tr>
<td>230.18 3201.9</td>
<td>234.55 3202.14</td>
</tr>
<tr>
<td>272.26 3202</td>
<td>277.41 3203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manning's n Values</th>
<th>num= 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta n Val</td>
<td>Sta n Val</td>
</tr>
<tr>
<td>0</td>
<td>0.03 152.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank Sta: Left</th>
<th>Right</th>
<th>Lengths: Left Channel</th>
<th>Right</th>
<th>Coeff Contr.</th>
<th>Expan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>152.44</td>
<td>300.53</td>
<td>130.61</td>
<td>131.46</td>
<td>132.31</td>
<td>.1</td>
</tr>
</tbody>
</table>

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 9

INPUT
Description:

Station Elevation Data num= 50
 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
 0 3194.5 3194.5 3194.5 3194.5 3194.5 3194.5 3194.5 3194.5
 46.36 3194.4 60.37 3194.34 63.74 3194.3 72.39 3194.16 73.84 3194.12
 78.41 3194. 85.69 3193.79 88.73 3193.71 101.56 3193.28 107 3193.09
 108.13 3193.1 109.41 3193 114.36 3192.82 137.12 3192 144.83 3191.76
 146.75 3191.7 151.13 3191.36 152.4 3191.76 159.41 3192 163.62 3192.16
 163.98 3192.2 167.74 3192.24 174.75 3192 190.63 3192 191.48 3192.01
 191.62 3192 196.22 3192.22 197.66 3192.27 200.19 3192.39 208.99 3192.48
 223.38 3192.6 232.21 3192.68 238.28 3192.71 240.54 3192.72 252.35 3192.63
 256.1 3192.7 260.79 3192.8 265.88 3193 285.65 3193.82 289.98 3194
 290.55 3194 291.28 3194.08 291.81 3194.1 299.84 3194.49 300.91 3194.52

Manning's n Values num= 3
 Sta n Val Sta n Val Sta n Val
 0 .03 151.13 .03 300.91 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
 151.13 300.91 144.87 149.68 160.76 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 8

INPUT
Description:
Station Elevation Data num= 50
 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
 0 3184.6 1.73 3184.7 14.02 3184.93 25.93 3185.1 38.74 3185.09
 50.74 3185 55.14 3185 76.31 3185.68 88.1 3184.41 94.82 3184.32
 121.99 3184 123.43 3184 146.39 3183.66 156.99 3183.6 161.61 3183.63
 179.75 3183.63 183.03 3183.6 187.84 3183.43 196.06 3183 197.27 3182.82
 205.19 3182 207.38 3181.39 208.67 3181.25 211.91 3182 212.94 3182
 216.2 3182.9 217.23 3183.07 218.83 3183.1 226.25 3183.04 246.49 3182.99
 248.17 3182.92 253.73 3182.46 256.26 3182.4 261.42 3182.58 272.88 3182.65
 281.58 3182.57 291.65 3182.6 293.5 3182.54 297.75 3182.55 301.55 3182.63
 302.29 3182.7 311.15 3183 316.03 3183.23 326.02 3183.54 329.95 3183.68
 335.07 3183.8 342 3184 349.73 3184.18 357.7 3184.3 359.41 3184.3

Manning's n Values num= 3
 Sta n Val Sta n Val Sta n Val
 0 .03 179.75 .03 359.41 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
 179.75 359.41 175.06 158.27 145.63 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 7

INPUT
Description:
Station Elevation Data num= 47
 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
 0 3175.1 4.32 3175 13.98 3174.85 31.77 3174.56 49.94 3174.26
 55.53 3174.2 64.23 3174.2 66.9 3174.18 76.2 3174.01 76.35 3174.01
 78.78 3174 80.98 3173.99 81.17 3173.99 82.53 3174 100.08 3174.15
 108.76 3174.2 115.52 3174.34 125.23 3174.58 128.96 3174.57 131.02 3174.59
 134.66 3174.5 139.69 3174.36 142.89 3174.31 145.78 3174 150.06 3173.48
 156.84 3173 161.79 3172.73 166.3 3172.68 171.04 3172.74 175.74 3172.66
 186.6 3172.8 187.05 3172.82 188.59 3172.98 189.69 3173 188.82 3173
 196.23 3173.8 204.1 3173.9 207.05 3173.94 210.88 3174 241.98 3174.43
 248.45 3174.5 257.1 3174.53 266.79 3174.57 296.87 3174.74 298.43 3174.76
 300.05 3174.8 300.91 3174.84

Manning's n Values num= 3
 Sta n Val Sta n Val Sta n Val
 0 .03 156.84 .03 300.91 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
 156.84 300.91 146.82 156.27 190.73 .1 .3

CROSS SECTION
RIVER: RIVER-1
REACH: Reach-1 RS: 6

INPUT
Description:
Station Elevation Data num= 50
 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
 0 316.6 4.22 3166.08 11.74 3166.14 22.98 3166.11 46.55 3165.95
 48.26 3165.93 71.1 3165.7 76.85 3165.56 79.93 3165.5 88.51 3165.36
 104.74 3164.99 121.32 3164.57 129.79 3164.45 148.42 3164.31 153.62 3164.29
 159.71 3163.32 170.95 3164.41 183.26 3164.5 213.89 3164.74 221.25 3164.79
 245.54 3164.91 261.62 3164.9 264.53 3164.88 284.16 3164.61 287.96 3164.64
 291.59 3164.62 301.92 3164.79 307.3 3165 314.26 3165.25 320.35 3165.36
 321.66 3165.4 325.53 3165.43 342.66 3165.54 357.22 3165.5 361.43 3165.3
 364.88 3165.26 365.74 3165.23 369.38 3165.4 372.63 3165.64 374.67 3165.72
 377.73 3165.67 385.91 3165.64 390.65 3165.5 400.8 3165.46 406.59 3165.53
 413.93 3165.58 418.51 3165.7 428.3 3165.78 432.38 3165.89 439.53 3166

Manning's n Values num= 3
 Sta n Val Sta n Val Sta n Val
 0 .03 221.25 .03 435.53 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
 221.25 435.53 152.13 148.16 151.7 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 5

INPUT
Description:
Station Elevation Data num= 50
 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
 0 3157.4 6.87 3157.46 16.27 3157.37 31.17 3157.2 38 3157.04
 39.35 3157 45.43 3156.75 57.53 3156 60.15 3155.78 65.21 3155.46
 66.79 3155.4 28.98 3155.32 82.15 3155.26 99.45 3155.13 102.88 3155.11
 109.98 3155.2 122.46 3155.33 125.16 3155.34 133.02 3155.25 148.71 3155
 153.91 3154.9 156.54 3154.94 157.44 3155 164.39 3155.34 166.18 3155.4
 179.54 3155.51 181.74 3155.48 192.21 3155.51 197.33 3155.55 200.96 3155.6
 226.49 3155.71 230.1 3155.76 240.37 3155.82 243.73 3155.8 259.6 3155.04
 260.71 3156.05 271.28 3156.22 274.39 3156.2 276.54 3156.22 287.03 3156.11
 293.32 3156 310.81 3156.67 328.37 3155.3 333.43 3155.16 337.63 3155.19
 348.4 3155.53 355.88 3155.8 359.02 3155.86 364.32 3156 369.38 3156.15

Manning's n Values num= 3
 Sta n Val Sta n Val Sta n Val
 0 .03 192.21 .03 369.38 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
 192.21 369.38 158.53 152.97 161.5 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1 RS: 4

INPUT
Description:
Station Elevation Data num= 50
 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
 0 3147.1 1.4 3147.07 3.07 3147.08 24.59 3147 29.55 3146.99
 29.86 3147 51.4 3146.89 54.19 3146.85 61.11 3146.77 65.13 3146.66
 84.84 3146.3 91.38 3146.13 94.09 3146 98.72 3146 100.6 3146
 101.1 3145.9 101.61 3145.93 114.5 3145.54 119.5 3145.54 135.87 3145.46
 141.21 3145.4 146.33 3145.41 148.5 3145.36 151.07 3145.15 151.35 3145.17
 152.66 3145.2 158.84 3145.36 162.74 3145.53 177.77 3145.68 180.38 3145.77
 184.51 3146 186.5 3146.5 3146 186.63 3146 194.81 3146.24
 196.75 3146.2 198.05 3146.25 208.07 3146.44 218.87 3146.58 225.23 3146.62
 231.55 3146.7 234.25 3146.7 3147 265.69 3147.13 267.69 3147.16 268.89 3147.16
 269.76 3147.2 272.71 3147.18 274.93 3147.15 276.15 3147.13 277.2 3147.09

Manning's n Values num= 3
 Sta n Val Sta n Val Sta n Val
 0 .03 141.21 .03 277.2 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 3

INPUT
Description:
Station Elevation Data num= 50
 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
 0 3129.4 3129.42 28.62 3129.26 54.07 3129.78 3128.8
 84.59 3128.7 115.51 3128.15 125.48 3128 133.55 3127.96 146.9 3128.1
 170.54 3128.61 181.23 3128.88 189.56 3128.91 193.01 3128.87 202.63 3128
 208.59 3128 210.85 3128.12 218.46 3128.27 223.4 3128.1 231.43 3128
 242.58 3127.68 249.79 3127.62 264.64 3127.69 272.22 3127.58 277.45 3127.58
 293.68 3127.7 301.48 3127.73 321.36 3127.5 331.63 3127.24 334.2 3127.22
 339.08 3127.05 343.14 3127.15 349.51 3127.4 354.59 3127.45 356.68 3127.4
 361.4 3127.369.37 3127 373.98 3126.9 377.03 3127 395.01 3127.35
 416.85 3127.6 427.57 3127.84 454.29 3128.51 471.35 3128.8 486.97 3129
 513.95 3129.46 521.35 3129.5 536.34 3129.74 541.74 3129.78 557.97 3130

Manning's n Values num= 3
 Sta n Val Sta n Val Sta n Val
 0 .03 293.68 .03 557.97 .03

Bank Sta: Left Right
 293.68 557.97
Lengths: Left Channel Right Coeff Contr. Expan.
 150.68 152.58 172.76 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 2

INPUT
Description:
Station Elevation Data num= 50
 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
 0 3119.7 1.94 3119.72 6.61 3119.63 17.04 3119.47 26.09 3119.2
 31.13 3119 41.53 3118.64 57.11 3118.31 61.14 3118.3 77.42 3118
 95.46 3117.82 118.34 3117.75 131.11 3117.78 133.17 3117.79 142.28 3117.92
 143.23 3117.9 146.95 3118 167.36 3118.34 179.98 3118.52 192.54 3118.69
 206.53 3119 218.2 3119.24 220.5 3119.3 224.8 3119.22 226.38 3119.22
 236.4 3119 243.7 3118.81 248.85 3118.7 255.99 3118.69 277.63 3119
 279.18 3119 287.97 3119.07 295.01 3119 3118.87 3118.85 315.16 3118.8
 324.43 3118.85 346.32 3119.04 347.07 3119 355.74 3119 361.36 3119.1
 368.24 3119 387.38 3119.43 3119 387.76 3119.03 384.4 3119.2 387.14 3119.18
 401.47 3119.33 414.07 3119.45 432.42 3119.72 436.27 3119.7 446.62 3120
Manning's n Values

<table>
<thead>
<tr>
<th>Station</th>
<th>n1</th>
<th>n2</th>
<th>n3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>224.8</td>
<td>.03</td>
<td>.448.62</td>
<td>.03</td>
</tr>
</tbody>
</table>

Bank Sta: Left | Right

Lengths: Left | Channel | Right | Coeff | Contr | Expan.

<table>
<thead>
<tr>
<th>Reach</th>
<th>Station</th>
<th>Length</th>
<th>Length</th>
<th>Length</th>
<th>Coeff</th>
<th>Contr</th>
<th>Expan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1</td>
<td>11</td>
<td>125.36</td>
<td>108.36</td>
<td>106.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>10</td>
<td>130.61</td>
<td>131.46</td>
<td>132.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>9</td>
<td>144.87</td>
<td>149.68</td>
<td>160.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>175.06</td>
<td>158.27</td>
<td>145.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>146.82</td>
<td>156.27</td>
<td>190.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>152.13</td>
<td>148.16</td>
<td>151.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>158.53</td>
<td>152.97</td>
<td>161.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>143.04</td>
<td>167.77</td>
<td>250.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>132.25</td>
<td>159.04</td>
<td>188.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>150.68</td>
<td>152.58</td>
<td>172.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS

<table>
<thead>
<tr>
<th>Reach</th>
<th>Station</th>
<th>Contr.</th>
<th>Expan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1</td>
<td>11</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>10</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>9</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach</td>
<td>River Sta</td>
<td>Profile</td>
<td>Q Total (cfs)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>Reach-1</td>
<td>11</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>10</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>9</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
</tbody>
</table>

PRE-DEVELOPED CHANNEL-2, 100 YRS, 1 HR.
PROJECT DATA
Project Title: 07014
Project File : POSTCHANNEL2.prj
Run Date and Time: 3/7/2011 9:22:37 PM

Project in English units

Project Description:
****** Autodesk, Inc. HEC-2 Input Data file ******

Minimum Data Input **********

PLAN DATA
Plan Title: Imported Plan 01
Plan File : C:\POSTCHANNEL2.p01

Geometry Title: Imported Geom 01
Geometry File : C:\POSTCHANNEL2.g01

Flow Title : Imported Flow 01
Flow File : C:\POSTCHANNEL2.f01

Plan Summary Information:
Number of Cross Sections = 10 Multiple Openings = 0
Culverts = 0 Inline Structures = 0
Bridges = 0 Lateral Structures = 0

Computational Information
Water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor = 0.001

Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow

FLOW DATA
Flow Title: Imported Flow 01
Flow File : C:\POSTCHANNEL2.f01

Flow Data (cfs)
River Reach RS PF
RIVER-1 Reach-1 10 750
Boundary Conditions

<table>
<thead>
<tr>
<th>River</th>
<th>Reach</th>
<th>Profile</th>
<th>Upstream</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>River-1</td>
<td>Reach-1</td>
<td>PF 1</td>
<td></td>
<td>Critical</td>
</tr>
</tbody>
</table>

GEOMETRY DATA

Geometry Title: Imported Geom 01
Geometry File: C:\POSTCHANNEL2.g01

CROSS SECTION

RIVER: River-1
REACH: Reach-1
RS: 10

INPUT

Description:

Station Elevation Data:
num= 50

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3202</td>
<td>13.93</td>
<td>3202</td>
<td>15.83</td>
<td>3201</td>
<td>72</td>
</tr>
<tr>
<td>27.74</td>
<td>3200.7</td>
<td>27.87</td>
<td>3200</td>
<td>35.69</td>
<td>3200</td>
</tr>
<tr>
<td>39.69</td>
<td>3199</td>
<td>43.43</td>
<td>3199</td>
<td>47.41</td>
<td>3198.9</td>
</tr>
<tr>
<td>51.03</td>
<td>3198</td>
<td>57.29</td>
<td>3197.88</td>
<td>60.17</td>
<td>3197.75</td>
</tr>
<tr>
<td>67.04</td>
<td>3196.9</td>
<td>72.35</td>
<td>3196.7</td>
<td>73.46</td>
<td>3196.53</td>
</tr>
<tr>
<td>81.98</td>
<td>3195.8</td>
<td>98.98</td>
<td>3195.51</td>
<td>85.98</td>
<td>3195</td>
</tr>
<tr>
<td>100.08</td>
<td>3195.76</td>
<td>102.26</td>
<td>3196</td>
<td>104.86</td>
<td>3199.69</td>
</tr>
<tr>
<td>112.64</td>
<td>3201.07</td>
<td>113.94</td>
<td>3201.76</td>
<td>117.76</td>
<td>3201.8</td>
</tr>
<tr>
<td>123.8</td>
<td>3202.6</td>
<td>127.88</td>
<td>3202.59</td>
<td>128.64</td>
<td>3202.8</td>
</tr>
<tr>
<td>141.73</td>
<td>3203</td>
<td>146.61</td>
<td>3203.48</td>
<td>148.27</td>
<td>3203.5</td>
</tr>
</tbody>
</table>

Manning's n Values:
num= 3

<table>
<thead>
<tr>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.03</td>
<td>78.11</td>
</tr>
</tbody>
</table>

Bank Sta: Left, Right
Lengths: Left Channel, Right
Coeff Contr, Expan.
153.56 | 149.89 | 148.26 | .1 | .3

CROSSED SECTION

RIVER: River-1
REACH: Reach-1
RS: 9

INPUT

Description:

Station Elevation Data:
num= 50

<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3195</td>
<td>9.29</td>
<td>3195</td>
<td>14.27</td>
<td>3193</td>
</tr>
<tr>
<td>22.37</td>
<td>3192.7</td>
<td>22.69</td>
<td>3192.66</td>
<td>24.19</td>
<td>3192.66</td>
</tr>
<tr>
<td>26.34</td>
<td>3192.65</td>
<td>31.81</td>
<td>3192.4</td>
<td>32.42</td>
<td>3192.3</td>
</tr>
<tr>
<td>43.87</td>
<td>3186.4</td>
<td>44.46</td>
<td>3186</td>
<td>46.13</td>
<td>3186</td>
</tr>
<tr>
<td>54.56</td>
<td>3185.67</td>
<td>60.69</td>
<td>3185.68</td>
<td>64.35</td>
<td>3185.69</td>
</tr>
<tr>
<td>74.89</td>
<td>3185.73</td>
<td>77.73</td>
<td>3185.73</td>
<td>77.67</td>
<td>3185.7</td>
</tr>
<tr>
<td>85.3</td>
<td>3186</td>
<td>88.06</td>
<td>3187.8</td>
<td>88.59</td>
<td>3188.17</td>
</tr>
<tr>
<td>96.28</td>
<td>3192.29</td>
<td>96.06</td>
<td>3192.56</td>
<td>97.51</td>
<td>3192.8</td>
</tr>
<tr>
<td>100.9</td>
<td>3193</td>
<td>101.82</td>
<td>3193.08</td>
<td>102.78</td>
<td>3193.11</td>
</tr>
<tr>
<td>106.66</td>
<td>3193.25</td>
<td>108.61</td>
<td>3193.3</td>
<td>114.88</td>
<td>3193</td>
</tr>
</tbody>
</table>

Manning's n Values:
num= 3

<table>
<thead>
<tr>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.03</td>
<td>60.69</td>
</tr>
</tbody>
</table>

Bank Sta: Left, Right
Lengths: Left Channel, Right
Coeff Contr, Expan.
150 | 149.94 | 149.91 | .1 | .3

CROSS SECTION

RIVER: River-1
REACH: Reach-1
RS: 8

INPUT

Description:
Station Elevation Data num= 50

<table>
<thead>
<tr>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3185.2</td>
<td>8.04</td>
<td>3185.11</td>
<td>9.66</td>
<td>3185.1</td>
<td>11.21</td>
<td>3185</td>
<td>12.33</td>
<td>3185</td>
</tr>
<tr>
<td>14</td>
<td>3184</td>
<td>15.4</td>
<td>3183.8</td>
<td>16.42</td>
<td>3183.7</td>
<td>22.37</td>
<td>3183.37</td>
<td>23.9</td>
<td>3183.4</td>
</tr>
<tr>
<td>24.25</td>
<td>3183.37</td>
<td>77.06</td>
<td>3183.37</td>
<td>33.4</td>
<td>3183</td>
<td>35.04</td>
<td>3183</td>
<td>44.04</td>
<td>3177</td>
</tr>
<tr>
<td>45.29</td>
<td>3176.81</td>
<td>46.06</td>
<td>3176.73</td>
<td>46.87</td>
<td>3176.7</td>
<td>52.73</td>
<td>3176.35</td>
<td>54.81</td>
<td>3176.36</td>
</tr>
<tr>
<td>56.12</td>
<td>3176.36</td>
<td>56.74</td>
<td>3176.4</td>
<td>57.08</td>
<td>3176.36</td>
<td>58.66</td>
<td>3176.36</td>
<td>60.92</td>
<td>3176.36</td>
</tr>
<tr>
<td>61.54</td>
<td>3176.4</td>
<td>61.88</td>
<td>3176.36</td>
<td>68.27</td>
<td>3176.36</td>
<td>68.61</td>
<td>3176.4</td>
<td>69.23</td>
<td>3176.36</td>
</tr>
<tr>
<td>75.34</td>
<td>3176.36</td>
<td>75.96</td>
<td>3176.4</td>
<td>77.26</td>
<td>3176.36</td>
<td>82.6</td>
<td>3176.64</td>
<td>82.95</td>
<td>3176.6</td>
</tr>
<tr>
<td>83.45</td>
<td>3175.7</td>
<td>84.29</td>
<td>3175.77</td>
<td>85.96</td>
<td>3177</td>
<td>90.48</td>
<td>3180</td>
<td>91.96</td>
<td>3181</td>
</tr>
<tr>
<td>94.96</td>
<td>3183</td>
<td>95.78</td>
<td>3183</td>
<td>102.27</td>
<td>3183.49</td>
<td>105.19</td>
<td>3183.55</td>
<td>105.62</td>
<td>3183.6</td>
</tr>
<tr>
<td>112.62</td>
<td>3183.19</td>
<td>113.64</td>
<td>3183</td>
<td>113.87</td>
<td>3181.97</td>
<td>115.21</td>
<td>3181</td>
<td>116.86</td>
<td>3180</td>
</tr>
</tbody>
</table>

Manning's n Values num= 3

<table>
<thead>
<tr>
<th>Sta</th>
<th>n Val</th>
<th>Sta</th>
<th>n Val</th>
<th>Sta</th>
<th>n Val</th>
<th>Sta</th>
<th>n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.03</td>
<td>58.66</td>
<td>.03</td>
<td>116.86</td>
<td>.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bank Sta: Left | Right | Lengths: Left Channel | Right | Coeff Contr. | Expan. | 58.66 | 116.86 | 146.35 | 149.59 | 152.84 | .1 | .3

CROSS SECTION

RIVER: RIVER-1

REACH: Reach-1

RS: 7

INPUT

Description:

Station Elevation Data num= 50

<table>
<thead>
<tr>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3175.3</td>
<td>0.11</td>
<td>3175.1</td>
<td>125.8</td>
<td>3175</td>
<td>15.3</td>
<td>3174.8</td>
<td>16.3</td>
<td>3174.51</td>
</tr>
<tr>
<td>17.21</td>
<td>3174.5</td>
<td>18.14</td>
<td>3174.41</td>
<td>21.35</td>
<td>3174.2</td>
<td>26.04</td>
<td>3174.2</td>
<td>27.91</td>
<td>3174.18</td>
</tr>
<tr>
<td>30.84</td>
<td>3174</td>
<td>34.71</td>
<td>3174</td>
<td>39.2</td>
<td>3171</td>
<td>40.16</td>
<td>3170.4</td>
<td>40.69</td>
<td>3170</td>
</tr>
<tr>
<td>43.68</td>
<td>3168</td>
<td>44.31</td>
<td>3167.75</td>
<td>44.56</td>
<td>3167.74</td>
<td>45.9</td>
<td>3167.47</td>
<td>46.02</td>
<td>3167.5</td>
</tr>
<tr>
<td>46.35</td>
<td>3167.4</td>
<td>49.19</td>
<td>3167.2</td>
<td>49.94</td>
<td>3167.24</td>
<td>52.79</td>
<td>3167.1</td>
<td>59.48</td>
<td>3167.1</td>
</tr>
<tr>
<td>67.25</td>
<td>3167.8</td>
<td>76.97</td>
<td>3167.07</td>
<td>77.03</td>
<td>3167.1</td>
<td>80.83</td>
<td>3167.15</td>
<td>81.78</td>
<td>3167.2</td>
</tr>
<tr>
<td>83.63</td>
<td>3167.23</td>
<td>84.06</td>
<td>3167.35</td>
<td>84.68</td>
<td>3167.34</td>
<td>84.99</td>
<td>3167.5</td>
<td>85.39</td>
<td>3167.46</td>
</tr>
<tr>
<td>85.96</td>
<td>3167.7</td>
<td>90.33</td>
<td>3170.6</td>
<td>95.43</td>
<td>3174</td>
<td>98.83</td>
<td>3174</td>
<td>101.74</td>
<td>3174.15</td>
</tr>
<tr>
<td>104.71</td>
<td>3174.21</td>
<td>107.95</td>
<td>3174</td>
<td>113.96</td>
<td>3174</td>
<td>114.93</td>
<td>3173.2</td>
<td>118.97</td>
<td>3170</td>
</tr>
</tbody>
</table>

Manning's n Values num= 3

<table>
<thead>
<tr>
<th>Sta</th>
<th>n Val</th>
<th>Sta</th>
<th>n Val</th>
<th>Sta</th>
<th>n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.03</td>
<td>59.48</td>
<td>.03</td>
<td>118.97</td>
<td>.03</td>
</tr>
</tbody>
</table>

Bank Sta: Left | Right | Lengths: Left Channel | Right | Coeff Contr. | Expan. | 59.48 | 118.97 | 149.99 | 150.09 | 150.19 | .1 | .3

CROSS SECTION

RIVER: RIVER-1

REACH: Reach-1

RS: 6

INPUT

Description:

Station Elevation Data num= 50

<table>
<thead>
<tr>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
<th>Sta</th>
<th>Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3166.5</td>
<td>2.11</td>
<td>3166.46</td>
<td>2.5</td>
<td>3166.5</td>
<td>16.12</td>
<td>3166.83</td>
<td>16.82</td>
<td>3166.87</td>
</tr>
<tr>
<td>19.15</td>
<td>3166.82</td>
<td>21</td>
<td>3166.8</td>
<td>22.41</td>
<td>3166.76</td>
<td>22.63</td>
<td>3166.8</td>
<td>23.12</td>
<td>3166.74</td>
</tr>
<tr>
<td>23.84</td>
<td>3166.73</td>
<td>28.51</td>
<td>3166</td>
<td>29.16</td>
<td>3166.5</td>
<td>31.13</td>
<td>3166.36</td>
<td>31.54</td>
<td>3166.3</td>
</tr>
<tr>
<td>32.55</td>
<td>3166.28</td>
<td>34.86</td>
<td>3166.1</td>
<td>35.88</td>
<td>3166</td>
<td>44.88</td>
<td>3160</td>
<td>45.43</td>
<td>3159.9</td>
</tr>
<tr>
<td>45.48</td>
<td>3159.95</td>
<td>55.49</td>
<td>3159.5</td>
<td>60.66</td>
<td>3159.5</td>
<td>62.07</td>
<td>3159.49</td>
<td>75.18</td>
<td>3159.49</td>
</tr>
<tr>
<td>75.65</td>
<td>3159.5</td>
<td>85.36</td>
<td>3159.91</td>
<td>86.39</td>
<td>3160</td>
<td>87.41</td>
<td>3160.7</td>
<td>87.89</td>
<td>3161</td>
</tr>
<tr>
<td>92.4</td>
<td>3164</td>
<td>92.63</td>
<td>3164.2</td>
<td>93.9</td>
<td>3165</td>
<td>95.4</td>
<td>3166</td>
<td>95.6</td>
<td>3166</td>
</tr>
<tr>
<td>96.65</td>
<td>3166.12</td>
<td>97.95</td>
<td>3166.21</td>
<td>98.77</td>
<td>3166.3</td>
<td>99.07</td>
<td>3166.29</td>
<td>99.82</td>
<td>3166.35</td>
</tr>
<tr>
<td>101.54</td>
<td>3166.44</td>
<td>112.45</td>
<td>3166.44</td>
<td>113.21</td>
<td>3166.4</td>
<td>114.27</td>
<td>3166.24</td>
<td>114.4</td>
<td>3166.3</td>
</tr>
<tr>
<td>114.8</td>
<td>3166.14</td>
<td>115.33</td>
<td>3166</td>
<td>117.88</td>
<td>3164.21</td>
<td>119.59</td>
<td>3163</td>
<td>120.98</td>
<td>3162</td>
</tr>
</tbody>
</table>

Manning's n Values num= 3

<table>
<thead>
<tr>
<th>Sta</th>
<th>n Val</th>
<th>Sta</th>
<th>n Val</th>
<th>Sta</th>
<th>n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.03</td>
<td>60.66</td>
<td>.03</td>
<td>120.98</td>
<td>.03</td>
</tr>
</tbody>
</table>

Bank Sta: Left | Right | Lengths: Left Channel | Right | Coeff Contr. | Expan. | 60.66 | 120.98 | 150.49 | 150.09 | 149.63 | .1 | .3

CROSS SECTION
RIVER: RIVER-1
REACH: Reach-1
RS: 5

INPUT
Description:
Station Elevation Data num= 50
<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 3156.5</td>
<td>.03 3156.53</td>
<td>3.32 3156.34</td>
<td>8.21 3156.08</td>
<td>13.04 3155.8</td>
</tr>
<tr>
<td>17.58 3155.56</td>
<td>21.11 3155.55</td>
<td>29.77 3155.3</td>
<td>30.64 3154.9</td>
<td>35.25 3154.88</td>
</tr>
<tr>
<td>38.8 3154.5.4</td>
<td>42.11 3154.34</td>
<td>42.8 3154.34</td>
<td>43.16 3154.4</td>
<td>44.66 3153.2</td>
</tr>
<tr>
<td>46.79 3152.64</td>
<td>47.6 3152.57</td>
<td>53.09 3152.25</td>
<td>63.6 3152.25</td>
<td>63.84 3152.32</td>
</tr>
<tr>
<td>65.55 3152.25</td>
<td>66.46 3152.34</td>
<td>66.7 3152.25</td>
<td>77.92 3152.26</td>
<td>81.99 3152.25</td>
</tr>
<tr>
<td>82.47 3152.25</td>
<td>84.23 3152.74</td>
<td>84.84 3152.68</td>
<td>86.49 3153.24</td>
<td>90.55 3155.46</td>
</tr>
<tr>
<td>91.48 3155.85</td>
<td>95.38 3157.47</td>
<td>95.77 3157.57</td>
<td>96.49 3157.9</td>
<td>97.82 3158.23</td>
</tr>
<tr>
<td>107.96 3158.63</td>
<td>108.92 3159.25</td>
<td>108.25 3159.2</td>
<td>108.39 3159.14</td>
<td>110.46 3159.06</td>
</tr>
<tr>
<td>112.72 3159.25</td>
<td>115.13 3158.19</td>
<td>116.49 3158.78</td>
<td>117.14 3158.63</td>
<td>117.95 3158.53</td>
</tr>
<tr>
<td>119.68 3158.41</td>
<td>122.68 3158.28</td>
<td>124.37 3158.27</td>
<td>127.16 3158</td>
<td>130 3158</td>
</tr>
</tbody>
</table>

Manning's n Values num= 3
<table>
<thead>
<tr>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.03 65.5</td>
<td>.03 130</td>
<td>.03</td>
</tr>
</tbody>
</table>

Bank Sta: Left Right
Lengths: Left Channel Right Coeff Contr. Expan.
65.5 130 149.5 150.03 150.63 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 4

INPUT
Description:
Station Elevation Data num= 50
<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 3150 2.86</td>
<td>3150 3.74</td>
<td>3149.89</td>
<td>7.36 3149.4</td>
<td>10.66 3149</td>
</tr>
<tr>
<td>13.26 3148.67</td>
<td>14.31 3148.5</td>
<td>15.49 3148.38</td>
<td>18.45 3148</td>
<td>18.6 3148</td>
</tr>
<tr>
<td>29.95 3147.41</td>
<td>31.36 3147.32</td>
<td>32.44 3147.2</td>
<td>32.77 3147.22</td>
<td>35.16 3147</td>
</tr>
<tr>
<td>35.58 3147.1</td>
<td>36.33 3146.9</td>
<td>39.85 3143.4</td>
<td>41.15 3142.3</td>
<td>42.47 3141.3</td>
</tr>
<tr>
<td>42.65 3141</td>
<td>44.15 3140</td>
<td>46.8 3139.8</td>
<td>56.71 3139.43</td>
<td>60.06 3139.43</td>
</tr>
<tr>
<td>61.59 3139.43</td>
<td>63.96 3139.43</td>
<td>64.51 3139.43</td>
<td>64.94 3139.43</td>
<td>66.46 3139.43</td>
</tr>
<tr>
<td>66.89 3139.43</td>
<td>67.44 3139.43</td>
<td>71.34 3139.43</td>
<td>71.77 3139.43</td>
<td>73.29 3139.43</td>
</tr>
<tr>
<td>83.3 3139.81</td>
<td>83.49 3139.8</td>
<td>85.86 3140</td>
<td>88.85 3142</td>
<td>89.79 3142.5</td>
</tr>
<tr>
<td>90.35 3143</td>
<td>94.85 3146</td>
<td>98.65 3146.23</td>
<td>104.12 3146.6</td>
<td>111.02 3147</td>
</tr>
<tr>
<td>112.79 3147.89</td>
<td>116.95 3150</td>
<td>117.5 3150.3</td>
<td>119.54 3151.31</td>
<td>122.88 3153</td>
</tr>
</tbody>
</table>

Manning's n Values num= 3
<table>
<thead>
<tr>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.03 61.59</td>
<td>.03 122.88</td>
<td>.03</td>
</tr>
</tbody>
</table>

Bank Sta: Left Right
Lengths: Left Channel Right Coeff Contr. Expan.
61.59 122.88 151.42 150.22 150.17 .1 .3

CROSS SECTION

RIVER: RIVER-1
REACH: Reach-1
RS: 3

INPUT
Description:
Station Elevation Data num= 50
<table>
<thead>
<tr>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
<th>Sta Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 3146</td>
<td>1.29 3145.59</td>
<td>5.09 3144.5</td>
<td>17.61 3141</td>
<td>17.85 3140.9</td>
</tr>
<tr>
<td>19.55 3140.34</td>
<td>20.55 3140.34</td>
<td>22.4 3140.22</td>
<td>25.16 3140.1</td>
<td>25.96 3140.13</td>
</tr>
<tr>
<td>31.6 3140.06</td>
<td>34.01 3140</td>
<td>37.66 3140</td>
<td>47.92 3134</td>
<td>49.96 3133.7</td>
</tr>
<tr>
<td>50.23 3133.73</td>
<td>51.84 3133.58</td>
<td>54.25 3133.49</td>
<td>54.7 3133.4</td>
<td>55.24 3133.45</td>
</tr>
<tr>
<td>57.6 3133.36</td>
<td>59.54 3133.3</td>
<td>61.74 3133.3</td>
<td>65.31 3133.2</td>
<td>74.84 3133.19</td>
</tr>
<tr>
<td>82.63 3133.19</td>
<td>83.78 3133.18</td>
<td>95.27 3133.18</td>
<td>95.44 3133.2</td>
<td>98.36 3133.17</td>
</tr>
<tr>
<td>101.87 3133.29</td>
<td>104.42 3133.33</td>
<td>106.36 3133.4</td>
<td>107.22 3133.42</td>
<td>110.83 3133.67</td>
</tr>
<tr>
<td>111.68 3133.79</td>
<td>112.61 3134</td>
<td>115.65 3134</td>
<td>117.21 3137</td>
<td>121.82 3140</td>
</tr>
<tr>
<td>123.78 3140</td>
<td>130.37 3140.32</td>
<td>131.14 3140.3</td>
<td>131.55 3140.37</td>
<td>134.5 3140.49</td>
</tr>
<tr>
<td>136.36 3140.67</td>
<td>137.13 3140.7</td>
<td>139.46</td>
<td>3141</td>
<td>142.75 3142</td>
</tr>
</tbody>
</table>

Manning's n Values num= 3
<table>
<thead>
<tr>
<th>Sta n Val</th>
<th>Sta n Val</th>
<th>Sta n Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.03 74.84</td>
<td>.03 149.31</td>
<td>.03</td>
</tr>
</tbody>
</table>

Bank Sta: Left Right
Lengths: Left Channel Right Coeff Contr. Expan.
CROSS SECTION

RIVER: RIVER-1

REACH: Reach-1

RS: 2

INPUT

Description:

<table>
<thead>
<tr>
<th>Station Elevation Data</th>
<th>num= 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>0 3132.7 12.69 3133 22.57 3133 24.16 3133 14 33.91 3133.6</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>43.88 3134 58.69 3135 59.34 3135 66.97 3136 79.26 3140.55</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>80.29 3140.57 86.8 3136 91.71 3135 97.56 3134.61 106.8 3134.3</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>108.24 3134.34 116.05 3134 125.55 3128 129.22 3128 135.44 3127.81</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>141.55 3128 162.21 3128.44 173.57 3128.5 188.26 3128.5 196.09 3128.3</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>202.63 3128 208.54 3128 216.3 3128.13 232.1 3128 246.13 3127.65</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>266.18 3127.7 269.63 3127.6 279.21 3127.59 301.78 3127.72 308.38 3127.65</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>339.3 3127.06 345.11 3127.23 354.5 3127.18 369.2 3126.87 388.35 3127.24</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>410.81 3127.56 428.53 3127.87 447.68 3128.34 465.68 3128.7 488.33 3129</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>527.87 3129 537.07 3129.74 545.49 3129.8 556.44 3130 557.97 3129.87</td>
</tr>
</tbody>
</table>

Manning's n Values | num= 3 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta n Val Sta n Val Sta n Val</td>
<td>0 .03 279.21 .03 557.97 .03</td>
</tr>
</tbody>
</table>

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. |
| 279.21 557.97 | 155.38 162.08 172.76 | .1 .3 |

CROSS SECTION

RIVER: RIVER-1

REACH: Reach-1

RS: 1

INPUT

Description:

<table>
<thead>
<tr>
<th>Station Elevation Data</th>
<th>num= 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>0 3122.9 11.07 3122.3 13.7 3122.1 17.11 3122.36 29.78 3121.15</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>42.36 3120 62.46 3119.73 74.3 3119.5 80.35 3119.31 86.94 3119</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>94.51 3118.75 102.42 3118.54 112.21 3118.33 127.88 3118.1 131.85 3118.02</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>143.54 3117.89 145.36 3117.9 152.26 3117.8 162.21 3117.8 172.92 3117.75</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>190.86 3117.8 211.69 3118.16 230.38 3118.44 247.73 3118.68 252.98 3118.8</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>256.23 3118.9 259.2 3118.9 273.17 3119.22 274.8 3119.3 285 3119.15</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>300.9 3118.8 309.29 3118.7 318.01 3118.78 324.99 3118.9 335.93 3119.03</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>337.96 3119 342.74 3119.1 347.45 3119.03 371.79 3118.83 380.17 3118.85</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>396.74 3119 414.66 3119 420.76 3119.1 422.7 3119 434.7 3119</td>
</tr>
<tr>
<td>Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev</td>
<td>441.47 3119.17 463.97 3119.4 482.1 3119.63 493.62 3119.76 504.43 3120</td>
</tr>
</tbody>
</table>

Manning's n Values | num= 3 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sta n Val Sta n Val Sta n Val</td>
<td>0 .03 252.98 .03 504.43 .03</td>
</tr>
</tbody>
</table>

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. |
| 252.98 504.43 | 0 0 0 | .1 .3 |

SUMMARY OF MANNING'S N VALUES

River: RIVER-1

<table>
<thead>
<tr>
<th>Reach</th>
<th>n1</th>
<th>n2</th>
<th>n3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
</tbody>
</table>
SUMMARY OF REACH LENGTHS

River: RIVER-1

<table>
<thead>
<tr>
<th>Reach</th>
<th>River Sta.</th>
<th>Left</th>
<th>Channel</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1</td>
<td>10</td>
<td>153.56</td>
<td>149.89</td>
<td>148.26</td>
</tr>
<tr>
<td>Reach-1</td>
<td>9</td>
<td>150</td>
<td>149.94</td>
<td>149.91</td>
</tr>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>146.35</td>
<td>149.59</td>
<td>152.84</td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>149.99</td>
<td>150.09</td>
<td>150.19</td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>150.49</td>
<td>150.09</td>
<td>149.83</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>149.5</td>
<td>150.03</td>
<td>150.63</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>151.42</td>
<td>150.22</td>
<td>150.17</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>149.96</td>
<td>154.24</td>
<td>332.44</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>155.38</td>
<td>162.08</td>
<td>172.76</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>160</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS

River: RIVER-1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-1</td>
<td>10</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>9</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>Reach</td>
<td>River Sta</td>
<td>Profile</td>
<td>Q Total</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Reach-1</td>
<td>10</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>9</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>8</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>7</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>6</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>5</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>4</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>3</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>2</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
<tr>
<td>Reach-1</td>
<td>1</td>
<td>PF 1</td>
<td>760.00</td>
</tr>
</tbody>
</table>

Post-Developed Channel-2, 100 yrs, 1 hr
ITEM-4 Alta Loma Box Culvert
R.C.B. Culvert Sizing Calculation Sheet
Culvert Report
Project Name: C:\Program Files\Hydraulic Tools\v105 60inch cmps.CSS

Total Discharge: 760.00 Cfs
Tailwater Elevation: 3196.44 ft

Physical Data for Culvert #1

Culvert Type: Round Pipe-Steel
Culvert Span: 5.50 ft
Culvert Rise: 5.50 ft
Culvert Area: 23.76 ft^2
Culvert Upstream Elevation: 3196.80 ft
Culvert Downstream Elevation: 3195.00 ft
Culvert Length: 90.00 ft
Culvert Slope: 0.020
Number of Barrels: 4
Entrance Condition: Headwall

Inlet Control Regression Coefficients:
K = 0.0078
M = 2.0000
c = 0.0379
Y = 0.6900

Outlet Control Parameters:
Mannings Roughness Coefficient for Culvert Top and Sides: 0.028
Mannings Roughness Coefficient for Culvert Bottom: 0.013
Composite Mannings Roughness Coefficient: 0.024
Entrance Loss Coefficient: 0.50

Hydraulic Results

Culvert Discharge: 760.00 Cfs
Governing Headwater Elevation: 3202.87 ft
Inlet Control Headwater Elevation: 6.07 ft
Outlet Control Headwater Elevation: 6.02 ft
Culvert Normal Depth: 3.93 ft
Culvert Critical Depth: 3.86 ft
Culvert Entrance Loss: 0.85 ft
Culvert Friction Loss: 1.34 ft
Culvert Exit Loss: 1.77 ft
Culvert Exit Velocity: 10.67 ft/sec
Pier Debris Width: 0.00 ft
Inlet Control Condition: Unsubmerged Inlet
Outlet Control Condition: M2 Drawdown Curve - Critical Depth as Control
Figures & Exhibits
RATIONAL METHOD

PFE, 2011
PRE-DEVELOPMENT
AREA DRAINAGE MAP, ONSITE AREA 2
TENTATIVE TRACT MAP NO. 18252
IN THE COUNTY OF SAN BERNARDINO, STATE OF CALIFORNIA