Section 6

Inspection, Evaluation and Testing

(as applicable to APSA tank facilities)
Inspections and Testing Summary

Two primary requirements for inspecting and testing, and associated recordkeeping

1. Applicable to all SPCC regulated facilities (40 CFR 112.7(e)):
 - Conduct inspections and tests required by 40 CFR 112 in accordance with written procedures developed for the facility by the owner/operator or the certifying engineer
 - Generic: Does not specify any particular standard, but references any testing/inspecting required by the rule
 - Mandates written procedures for those tests/inspections
 - The written procedures and a record of the inspections and tests must be kept for 3 yrs
 - Records must be signed by the supervisor or inspector
 - Usual and customary business recordkeeping practices is OK
Inspections and Testing Summary

- Applicable to all SPCC regulated facilities (40 CFR 112.7(e)):
 - Examples of inspections and tests required by 40 CFR 112
 - Test or inspect each aboveground container for integrity on a regular schedule and whenever you make material repairs 112.7(c)(6)
 - Prior to filling and departure of any tank car or tank truck, closely inspect for discharges the lowermost drain and all outlets of such vehicles... 112.7(h)(3)
 - Regularly test (overfill prevention) liquid level sensing devices to ensure proper operation 112.7(c)(8)(v)
 - Inspect the condition of the accumulation (in dikes) before starting, to ensure no oil will be discharged 112.8(b)(1)
 - Inspect and may drain uncontaminated retained stormwater 112.8(b)(2)
 - Observe effluent treatment facilities frequently enough to detect possible system upsets that could cause a harmful navigable water discharge 112.8(c)(9)
 - Regularly inspect all aboveground valves, piping, and appurtenances 112.8(d)(4)
Inspections and Testing Summary

Two primary requirements for inspecting and testing, and associated recordkeeping:

2. Applicable to on-shore facilities (40 CFR 112.8(c)(6)):
 - This would include all APSA tank facilities
 - Test or inspect each aboveground container for integrity on a regular schedule and whenever you make material repairs
 - Must determine, in accordance with industry standards:
 - The appropriate qualifications for personnel performing tests and inspections
 - The frequency and type of testing and inspections, which take into account container size, configuration, and design
 - Examples of integrity tests include: visual inspection, hydrostatic testing, radiographic testing, ultrasonic testing, acoustic emissions testing, or other systems of non-destructive testing
 - Need to specify the above for each tank or group of tanks in the Plan
Inspections and Testing Summary

Two primary requirements for inspecting and testing, and associated recordkeeping

2. Applicable to on-shore (and all APSA) facilities (continued):

- Must keep comparison records
 - May need to keep for more than 3 years
- Must also inspect the container's supports and foundations
- Must frequently inspect the outside of the container for signs of deterioration, discharges, or accumulation of oil inside diked areas
- Records of inspections and tests kept under usual and customary business practices are OK

NOT the approved recordkeeping method
Inspections and Testing Summary

The inspection and testing program and procedures must be written/described in the Plan:

- For Tier I qualified facilities, Table G-5 in the Template must be completed
- The specific industry standards used must be referenced
 - Plans can still include ‘environmentally equivalent’ measures if determined/approved/certified by a PE
- Scope, frequency and methods of inspections or testing
- Personnel to carry out the inspections/testing and the qualifications required of them
Periodic, Scheduled Inspections & Integrity Testing

- Intended to prevent, predict, and detect discharges
- Somewhat flexible, but must be in accordance with industry standards
 - So... unless an environmental equivalence determination is made
 - there is a limit to this flexibility
 - Type, scope & frequency of inspections depend on tank or container type, containment configuration, and industry reference standard selected or considered
 - Could range from periodic visual inspections by facility personnel to detailed internal and external physical testing (e.g. radiographic or ultrasonic plus tank entry) by certified/qualified outside specialists
 - Visual inspections-only are often all that would be required
- Performed on a ‘regular schedule’, as well as whenever material repairs are made
Frequent Visual Inspection
(40 CFR 112.8(c)(6))

 Applies to:

- Bulk storage containers & tanks, oil-filled equipment, associated piping, valves, appurtenances, etc., and other components that could be a source or cause of an oil release
 - Bulk storage tanks and containers
 - Includes mobile/portable tanks, containers, drums, totes, non-transportation related tanker trucks
 - Piping connected to these tanks and containers
Frequent Visual Inspection
(40 CFR 112.8(c)(6))

- Intended to be a routine (though sufficiently detailed) walk-around by the owner/operator... typically conducted by properly trained facility personnel
 - Can be used to meet certain industry standard integrity testing requirements (e.g. STI SP001)
- Must occur frequently to detect signs of deterioration, discharges, or accumulations of oil inside diked areas
- Records for integrity tests and frequent visual inspections – usual and customary business practices will suffice
 - Retain for at least 3 years, though
 - Must be signed by inspector or supervisor
 - Template contains a (cruddy) log and schedule form in Attachment 3.1 (Table G-16)
Inspections

Description must be consistent with practice

- Forms and details must match, too
- Must now reference and be consistent with the relevant industry standard

Periodic Integrity Testing
Tank testing will be performed when reasonable suspicion is raised by deficiencies identified during inspections, review of maintenance records, or age or design life; but no less frequently than every ten years.

The testing methods used will consider the tank system design (i.e., tank, piping, supports) and may incorporate hydrostatic, visual, shell thickness measurement, or other non-destructive techniques. During testing, attention will be directed to seams, welds, inlet and outlet piping connections, and gaskets, as applicable. Deficiencies which could create a potential spill source will be repaired prior to placing the tank in service.

Unless there is physical evidence to indicate that another type of testing is warranted, intends to perform a visual examination in lieu of the integrity testing, believes that the visual examination provides equivalent environmental protection as other types of integrity tests in this situation due to the following:

- All bulk tanks have secondary containment;
- All sides of the bulk tanks are visible for inspection; and
- All bulk tanks (all < 3,000 gallons) are elevated, or on containment pads; and are of single use (i.e., motor oil, diesel, and gasoline) such that there is minimal risk of failure due to corrosion.

All bulk tanks are periodically and annually inspected.

Table 4-2: Inspection and Testing Program

<table>
<thead>
<tr>
<th>Facility Component</th>
<th>Action</th>
<th>Frequency/Circumstances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aboveground container</td>
<td>Inspect outside of container for signs of deterioration and discharges.</td>
<td>Weekly,Monthly (documented) and Annually (documented), during scheduled inspections, and whenever material repairs are made. (Appendix C contains Forms)</td>
</tr>
<tr>
<td>Container supports and foundations</td>
<td>Inspect container for supports and foundations.</td>
<td>Weekly, Monthly (documented) and Annually (documented), during scheduled inspections, and whenever material repairs are made. (Appendix C contains Forms)</td>
</tr>
<tr>
<td>Lowermost drain and all outlets of tank truck</td>
<td>Visually inspect</td>
<td>Prior to filling and departure</td>
</tr>
<tr>
<td>All aboveground valves, piping, and appurtenances</td>
<td>Assess general condition of items such as flange joints, expansion joints, valve glands and bodies, catch pans, piping supports, locking valves, and metal suifsets.</td>
<td>Weekly, Monthly (documented) and Annually (documented), during scheduled inspections, and whenever material repairs are made. (Appendix C contains Forms)</td>
</tr>
</tbody>
</table>

4.6.1 Weekly Inspection
Facility personnel will conduct a visual weekly inspection of each container and containment listed in Table 3-1, Petroleum Containers (55 gallons or larger).

These inspections need not be documented. However any sign of a release, drips, or staining outside of the containment must be promptly addressed. If equipment is replaced or repaired, Section 2.4.1 of this Plan should be reviewed to determine if Plan revisions are required.

4.6.2 Monthly Inspection
Facility personnel will conduct a monthly inspection of each container or containment listed in Table 3-1, Petroleum Containers (55 gallons or larger).

The results of each monthly inspection must be recorded on the Monthly Facility Inspection Checklist (blank form may be found in Appendix C) and completed reports should be retained for a minimum of three years in Appendix I of this Plan.

Monthly inspection records are to be signed by the Environmental Coordinator.

4.6.3 Annual Inspection
Facility personnel perform a comprehensive inspection of facility equipment on an annual basis. The parameters of the annual inspection include the monthly checklist and an Annual tank inspection Form that is completed for each tank or fuel truck. Inspection parameters are detailed in the Annual Facility Inspection Checklist presented in Appendix C. Annual inspections are typically performed in October of each year.
ANNUAL FACILITY INSPECTION CHECKLIST

[The Annual Inspection includes completion of this form plus an Annual Tank Inspection Report form for each Tank and/or Fuel Truck]

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time:</th>
<th>Inspector:</th>
<th>Reviewed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Environmental Coordinator</td>
</tr>
</tbody>
</table>

Drainage
- Any noticeable oil sheen or runoff.
- Containment drainage valves are closed/locked.
- Oil/water separator systems working properly.
- Effluent from oil/water separator inspected.
- No visible of sheen in containment area.
- No standing water in containment area.

ASTs
- Tank surfaces checked for signs of leakage.
- Tank condition good (no rusting, corrosion).
- Bolts, rivets, or seams are not damaged.
- Tank foundation intact.
- Level gauges and alarms working properly.
- Vents are not obstructed.
- Valves, flanges, and gaskets are free from leaks.
- Containment is in good repair.

Pipelines
- No corrosion or damage to pipelines or supports.
- Buried pipelines are not exposed.
- Out-of-service pipes capped.
- Signs/barriers to protect pipelines are in place.
- No leaks at valves, flanged, or other fittings.

Truck Loading/Unloading Area
- No standing water in rich area.
- Warning signs posted.
- No leaks in hoses.
- Drip pans not overflowing.
- Catch basins free of contamination.
- Containment curbing or trenches intact.
- Connections are capped or blank flanged.

Security
- Fence and gates intact around entire perimeter.
- Gates have locks.
- ASTs locked when not in use.
- Pump starter controls locked, when not in use.
- Lighting is working properly.

Training
- Spill prevention briefing held.
- Staff has re/c'd training in past 12 months.
- Training records are in order.

Response Equipment (Appendix F)
- Inventory checked and present.

Annual Tank Inspection Form

[Complete one form for each Tank or Fuel Truck]

<table>
<thead>
<tr>
<th>Tank / Truck No.:</th>
<th>Tank Name:</th>
<th>Tank Capacity:</th>
<th>U.S. Gallons</th>
</tr>
</thead>
</table>

1. **Hoses & Piping**
 - General appearance of hoses
 - Any leaks? Yes/No
 - If yes, explain
 - Aboveground piping free of leaks?

2. **Corrosion Control**
 - Note general appearance of paint on shell, and structural members:
 - Is rusting or pitting occurring on any of the above?
 - If yes, explain where and if repairs are needed immediately.
 - Are all ground and/or anode straps in place?
 - If missing or damaged, indicate location on drawing and explain repairs needed.

3. **Are high-level (overfill) alarms present?**
 - Functioning properly?
 - Tested to verify?

4. **Pressure / vacuum gauges present?**
 - Functioning properly?

5. **Contamination**
 - Is the containment free of oil and water?
 - Is there any evidence of oil outside the containment (i.e. free liquid, staining)?
 - If so, attached a sketch indicating the location, extent and amount of the release.

6. **Observations**
 - Note all observations regarding the presence of contamination, the condition of the tank (any damage), the containment and/or piping / hoses requiring attention:
 - Training records are in order.
SPCC/CWA and RCRA WEEKLY INSPECTION SHEET

NOTE: Completed inspection sheets must be kept on file for at least three years.

<table>
<thead>
<tr>
<th>Inspector:</th>
<th>Date:</th>
</tr>
</thead>
</table>

Note regarding draining rain water from containment berms: Due to rare heavy/frequent rainfall, containment berms should rarely require draining. If draining is required, the berm's contents must be carefully examined to verify that only unpoluted rainwater will be discharged (i.e., no oil sheen). Contact Environmental Coordinator/Mgr if any question of possible retained water contamination exists prior to draining. Environmental will provide forms to document proper (SPCC or Storm Water) containment discharge if draining is needed.

Equipment / Products/Conditions

<table>
<thead>
<tr>
<th>Equipment / Products/Conditions</th>
<th>Inspection Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumps: Check levels and oil levels, run pumps as needed with care not to discharge oil layer to retention basin. (After pumping, check retention basin for excessive oil (more than the typical ~3-5 feet of thin sheen layer across the downwind width). Contact CO & Environmental if excessive oil is observed in sumps (as it may indicate an oil spill or leak upstream of sump).</td>
<td>Time / Initials</td>
</tr>
<tr>
<td>General Purpose Retention Basin: Look for excessive oil, basin should contain no significant foreign objects, have at least 2' of freeboard and liner should show no damage. (Re-assess basin conditions if after sump discharge has taken place)</td>
<td>Time / Initials</td>
</tr>
<tr>
<td>Alternate (southeast) Retention Basin: (same inspection criteria as above)</td>
<td>Time / Initials</td>
</tr>
<tr>
<td>Intake Structures: Check for proper positioning of primary screens, excessive/obstructive debris in main intake, check for overfilling of rotating screen conveyor bin and screen flush water baskets.</td>
<td>Time / Initials</td>
</tr>
<tr>
<td>Hazardous Waste Storage Area: (Between 11,2 and 38,4 ft) Check that all drums are securely sealed, not leaking and in good condition, on pallets and have completed and dated labels. (2 dates for waste drum, 1 date for empty). Check that the containment flooring is clean and in good physical condition. Empty drums must be labeled/marked and dated as "Empty". Containers must be stored with adequate aisle space between rows. Check for proper operation/condition of eyewash, emergency shower and the presence of fire extinguisher and adequate spill supplies.</td>
<td>Time / Initials</td>
</tr>
<tr>
<td>Hazardous Waste Satellite Accumulation Area #1: (adjacent 5th floor, 11,2's "AUX" Haz. Mat/Product Storage Area) Area should have: -- no more than one 55-gal drum per waste stream/device, -- drums should be sealed and secured to leakage, -- secondary containment should be intact with simple capacity -- add free of accumulated liquids, -- drums must have labels with waste description and date of 1st waste insertion (legible); 1st waste insertion date must be less than 270 days (6 months) old. -- fire extinguisher and spill supplies present with clear access</td>
<td>Time / Initials</td>
</tr>
<tr>
<td>Slide 180</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Hazardous Waste Satellite Accumulation Area #3 (adjacent Unit 182's Smoke Stack): Area should have: -- no more than one 55-gal drum per waste stream/type, --drums should be sealed and secure/no leakage, --secondary containment should be intact with ample capacity, and free of accumulated liquids, --drums must have labels with waste description and date of 1st waste addition (legible), -- 1st waste insertion date less than 270 days (9 months) old.</td>
<td></td>
</tr>
<tr>
<td>Chemical Product/Hazardous Material Storage #1 (adjacent and within Bldg. 182's "AUX." Haz. Mat./Product Storage Area): All drums of product should behave: -- non-leaking, --sealed (spigots - OK) --identifiable contents via markings. -- All buckets/bags, drums, and draw tubes should be clean/dry or placed above a containment tray. No more than four (4) drums of Ammonium Hydroxide at a time in Area. Floor surface free of evidence of spills.</td>
<td></td>
</tr>
<tr>
<td>Chemical Product/Hazardous Material Storage #2 (adjacent northeast corner in Bldg. 182): All drums of product should behave: -- non-leaking, --sealed (spigots - OK) --identifiable contents via markings. No more than four (4) drums of Ammonium Hydroxide at a time in Area. One(1) Hydrazine tole acceptable. Floor surface free of evidence of spills.</td>
<td></td>
</tr>
<tr>
<td>Chemical Product/Hazardous Material Storage #3 (outside Bldg. 384 near Hydrazine tole): All drums of product should behave: -- non-leaking, --sealed (spigots - OK) --identifiable contents via markings. No more than four (4) drums of Ammonium Hydroxide at a time in Area. Floor surface free of evidence of spills.</td>
<td></td>
</tr>
<tr>
<td>UREA Reactor and Tank (south of Bldg. 182): Check for piping and vessel leaks, secure secondary containment tank levels, gauges and instruments registering normal values. Urea pellet spills cleaned up promptly.</td>
<td></td>
</tr>
<tr>
<td>UREA Tank (south of Bldg. 384): Check for piping and vessel leaks, secure secondary containment tank levels, gauges and instruments registering normal values. Urea pellet spills cleaned up promptly.</td>
<td></td>
</tr>
<tr>
<td>Hydrazine IBCs (totes), both for Bldgs 182 and 384: IBCs must have secure secondary containment with no combustible debris within/near the containment, all tubing, valves free of leaks and in good working order. Containment valves fully closed.</td>
<td></td>
</tr>
<tr>
<td>New and In-Use Lube Oil Tanks and Containment: Tanks, piping, valves, fittings/flanges and containment should be in good working order and free of corrosion or damage. Areas showing more than minor rusting may need to be scraped clean, inspected for structural integrity, repaired if necessary, and repainted. There should be no active leaks or areas of wet oil residues. Hose fittings should be tight and non-leaking. The floor around the unit should have no evidence of active oil spills or leaks. The containment drain valve(s) should be fully closed or capped.</td>
<td></td>
</tr>
<tr>
<td>Lube Oil Reservoirs (Units 1 - 5): (same inspection criteria as above)</td>
<td></td>
</tr>
<tr>
<td>Turbo-Toc Oil Conditioner (Bldg 182): Turbo-Toc piping, hoses, valves, and fittings/flanges should be in good working order and free of corrosion or damage. There should be no active leaks or areas of wet oil residues. Hose fittings should be tight and non-leaking. The floor around the unit should have no evidence of active oil spills or leaks. Minor oil drips can be managed with spill pads - but the spill pads must be disposed of as haz. waste and replaced before becoming saturated.</td>
<td></td>
</tr>
<tr>
<td>Hypochlorite Tank: Tank and piping system should be free of leakage and at all levels and sensors within normal operating ranges. Containment should be free of debris and only contain rainwater.</td>
<td></td>
</tr>
</tbody>
</table>
FUEL TANK DAILY INSPECTION LOG

Inspections are in compliance with 40 CFR 112.7, California Aboveground Petroleum Storage Act (HSC Ch 6.67), and [Department's Spill Prevention, Control, and Countermeasure Plan (SPCC)](https://example.com)

Number of Tanks:
- (1) 4000-gallon Aboveground Tank
- (1) 2500-gallon Aboveground Tank

Product Stored:
- (1) 4000-gallon Tank of Gasoline
- (1) 2500-gallon Tank of Gasoline

Write in date of inspection and circle yes (Y) or no (N) for all questions.

<table>
<thead>
<tr>
<th>Day</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is piping and electrical conduit to aboveground tanks in good condition (no cracks or deterioration)?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Are spill buckets underneath delivery line connections in good condition (no cracks or holes) and clean (no drips)?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Are piping and valves from spill buckets in good condition (no cracks or deterioration) with valve caps in place & secured?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Are grounding cable hook-ups to tank and in good condition?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Are aboveground fuel tank ladders unobstructed and in good condition?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Is leak detection system in good working order with no unattended alarms (check alarm panel)?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Are exterior walls of fuel tanks in good condition (no rust, cracks, dents, or visible signs of damage)?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Is secondary containment of fuel tanks clean and free of liquids (water or gasoline)?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Are spill control and cleanup supplies present and in good condition?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Is area around aboveground storage tank free from debris and obstructions?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Describe any observations for items checked "no":

Describe corrective action taken for items checked "no":

Submit inspection log to facility supervisor weekly.

Inspection records shall be maintained for at least three (3) years.
MONTHLY BULK DIESEL ABOVEGROUND TANK INSPECTION CHECKLIST

Roybal Comprehensive Health Center: 1,500 gal. diesel tank

Inspector Name: ___________________ Signature: ___________________ Date: ___________

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>NO</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the tank system free of visual signs of damage (cracks, dents, corrosion or leakage):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Tank exterior – including small cracks in concrete exterior or rusting on steel components?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Piping, hoses, valves, fittings or connections?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Tank and piping mounts (also check under tank if possible)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Is the secondary containment leak detection system alarm horn and light properly operating?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(test the alarm panel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Is equipment functioning properly (test if possible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Pumps, valves and connections?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. High-level alarm (at the tank and at fill port area) and the tanks’ fuel level gauge?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Is tank area (and entire security fenced area) clean and free of leaves, trash or other debris?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Is the tank and immediate area free of oil/fuel spill residues or other indications of leakage/spillage?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Is tank clearly and legibly signed/labeled: NFPA numbered warning sign, No Smoking, Contents, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Is the tank secured from vandalism/gate locked?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Day tank system free of visual signs of damage or leakage?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Is the tank fill port up the driveway ramp secured and closed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Day tank system (including piping, gauges and fittings) free of visual signs of damage or leakage?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Are the spill control supplies present and well stocked?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Is the containment berm around the storm drain in the generator area properly in place (or, if equipped with safe drain valve – the valve closed)?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Describe any observations for items checked “NO”:

__

__

Corrective actions required or taken for observations for items checked “NO”:

__

__

Due Date: ___________________ Follow-Up Date: ___________________
Field Conditions Consistent with Inspections?

3.5.1 Inspections

The following contains general inspection guidelines employed as part of the inspection program. More specific inspection criteria is presented on the SPCC Inspection Form provided in Appendix I.

1. All storage tanks and oil-containing equipment will be examined for leaks from seams, rivets, bolts, and gaskets and for signs of deterioration (e.g., discoloration, corrosion, cracks) of the tank vessel, aboveground foundation and tank structure supports;

2. All associated piping will be checked for dripping, loose joints, damage to supports, and pipe deflection;

3. All connections will be checked for leakage, drainage, tightness, and appropriate capping;

4. All pumps will be checked for evidence of leakage, proper operation, and damage;

5. All storage areas and containment systems will be inspected for integrity and the accumulation of stored product. If oil or petroleum product is observed in the containment system, the source of the oil or petroleum product will be determined.

6. The security of the tanks will be checked (e.g., applicable tank valves and equipment locked and secured, applicable doors to tank or container storage areas locked).

If a problem is detected during an inspection, notification will be made to the appropriate SPCC Management Coordinator. The SPCC Management Coordinator will be responsible for initiating and implementing corrective action to mitigate the problem. The SPCC Technical Coordinator or designee may be consulted and provide assistance, as required.

<table>
<thead>
<tr>
<th>Date of Inspection</th>
<th>Name of Inspector</th>
<th>Initials of Inspector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diesel Fuel ASTs</th>
<th>Are there signs of leakage from the container, piping, or equipment?</th>
<th>Are there signs of corrosion/deterioration on the container, piping, or equipment?</th>
<th>Is there evidence of spills or releases on the ground?</th>
<th>Is spill cleanup equipment not accessible?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boiler AST</th>
<th>Are there signs of leakage from the container, piping, or equipment?</th>
<th>Are there signs of corrosion/deterioration on the container, piping, or equipment?</th>
<th>Is there evidence of spills or releases on the ground?</th>
<th>Is spill cleanup equipment not accessible?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emergency Generator ASTs</th>
<th>Are there signs of leakage from the container, piping, or equipment?</th>
<th>Are there signs of corrosion/deterioration on the container, piping, or equipment?</th>
<th>Is there evidence of spills or releases on the ground?</th>
<th>Is spill cleanup equipment not accessible?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yes responses require written explanation of corrective actions.

Corrective Actions

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Must either use the EPA SPCC Plan Template or fully comply with the ‘regular’ integrity testing requirements of 40 CFR 112.8(c)(6)

- Template requirements based on 112.8(c)(6) and STI SP-001 4th Ed.
More Inspection Examples
Inspections
Don’t forget tank supports and foundations!
Inspections
Inspections
CAUTION
CHECK FOR OIL CONTAMINATION BEFORE OPENING DRAIN VALVE
RECORD ALL VALVE OPERATIONS IN OPERATIONS LOGBOOK
CLOSE VALVE AFTER DRAINING
Inspections
Regularly Scheduled Integrity Testing

Applies to:
- Non-qualified and Tier II qualified facilities
- Large (field-constructed or field-erected) aboveground storage containers
- Medium (shop built, field-erected or combo) aboveground storage containers
- Small (shop-built) aboveground bulk storage containers
- Aboveground bulk storage containers on, partially in (partially buried, bunkered, or vaulted tanks) and off the ground wherever located
- Aboveground bulk storage containers storing any type of oil

Examples: mobile/portable containers, drums, totes
Potentially Relevant Industry Standards - Visual Inspections &/or Integrity Testing

<table>
<thead>
<tr>
<th>Facility Component(s) Covered in Standard or Recommended Practice</th>
<th>API 653</th>
<th>STI SP001</th>
<th>API 570</th>
<th>API RP* 575</th>
<th>API RP* 574</th>
<th>API 12R1</th>
<th>API 1110</th>
<th>ASME B31.3</th>
<th>ASME B31.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>New equipment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Equipment that has been in service</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shop-built AST</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Field-erected AST</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Plastic tanks</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container supports or foundation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Diked area</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aboveground valves, piping, and appurtenances</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Underground piping</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore valves, piping, and appurtenances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Table 7-2. Summary of industry standards and recommended practices (RP) for ASTs.

<table>
<thead>
<tr>
<th></th>
<th>API 653</th>
<th>STI SP-001</th>
<th>API RP 575</th>
<th>API RP 12R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment covered</td>
<td>Field-fabricated, welded, or riveted ASTs operating at atmospheric pressure and built according to API 650.</td>
<td>ASTs including shop-fabricated and field-erected tanks and portable containers and containment systems.</td>
<td>Atmospheric and low-pressure ASTs.</td>
<td>Atmospheric ASTs employed in oil and gas production, treating, and processing.</td>
</tr>
<tr>
<td>Scope</td>
<td>Inspection and design; fitness for service; risk</td>
<td>Determined by the type of material stored within the tank and the operating temperature. Inspection of tanks by the owner/operator and certified inspectors.</td>
<td>Inspection and repair of tanks.</td>
<td>Setting, connecting, maintaining, operating, inspecting, and repairing tanks.</td>
</tr>
<tr>
<td>Inspection interval</td>
<td>Certified inspections: Dependent on tank's service history. Intervals from 5 to 20 years. Owner inspections: monthly.</td>
<td>Certified inspections: Inspection intervals and scope based on tank size and configuration. Owner inspections: monthly, quarterly, and yearly.</td>
<td>Same as API 653.</td>
<td>Scheduled and unscheduled internal and external inspections conducted as per Table 1 of the Recommended Practice.</td>
</tr>
<tr>
<td>Inspection performed by</td>
<td>Certified inspector, tank owner.</td>
<td>Certified inspector, either by API or STI.</td>
<td>Same as API 653.</td>
<td>Competent person or qualified inspector, as defined in recommended practice.</td>
</tr>
<tr>
<td>Applicable section of this document</td>
<td>Section 7.5.1</td>
<td>Section 7.5.2</td>
<td>Section 7.5.3</td>
<td>Section 7.5.4</td>
</tr>
</tbody>
</table>
Categorization Logic Chart for Aboveground Storage Tank Inspection & Integrity Test Standards

Notes:
SP001 refers to Steel Tank Institute (STI) SP001: Standard for Inspection of Aboveground Storage Tanks (Fourth Edition, July 2006)
STI SP-001 Scope

- Aboveground storage tanks
- Stable, flammable, & combustible liquids
- Covers:
 - Shop-fabricated tanks
 - Portable containers
 - Field-erected tanks (up to 30' diameter & 50' high only, shell thickness less than \(\frac{1}{2}'' \))
 - Covered in Appendix B of the Standard

STANDARD FOR THE INSPECTION OF ABOVEGROUND STORAGE TANKS

SP001
ISSUED JULY 2006
4th EDITION
Types of SP001 Inspections

- **Periodic AST Inspection (P)**
 - Performed by owner
 - Monthly basis
 - Example checklist provided in SP-001 standard
 - Records maintained for at least 3 years

- **Formal external inspection (E)**
 - Performed by STI certified inspector
 - Records retained for life of the tank

- **Formal internal inspection (I)**
 - Performed by certified inspector
 - Records retained for life of the tank

- **Leak test (L)**
 - Performed by owner or his/her designee
5.0 INSPECTION SCHEDULE

5.1 The owner shall use the AST's type, size, and type of installation, corrosion rate and previous inspection history, if any, to develop a schedule of applicable types of inspections for each AST per Table 5.5.

5.2 Owners who have an inspection plan shall use this standard to establish the inspection criteria for ASTs described in this standard using the AST type, size, and previous inspection history, type of installation and corrosion rate.

5.3 Certified inspectors using this standard to conduct inspections, shall use the AST type, size, previous inspection history, type of installation, corrosion rate and the schedule determined by the owner, so long as the information is correct and in accordance with the requirements of this standard.

5.4 AST CATEGORIES USED IN TABLE 5.5

5.4.1 Category 1 - ASTs with spill control, and with CRDM

5.4.2 Category 2 - ASTs with spill control and without CRDM

5.4.3 Category 3 - ASTs without spill control and without CRDM

5.4.4 Table 5.3 shows some typical tank types and their corresponding AST category

<table>
<thead>
<tr>
<th>TANK CONFIGURATION</th>
<th>TANK HAS CRDM?</th>
<th>AST CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST in contact with ground</td>
<td>no</td>
<td>2 or 3</td>
</tr>
<tr>
<td>Elevated tank with no part of AST in contact with ground (includes concrete encased tanks)</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>Vertical tank with RPB and spill control</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>Vertical tank with double bottom and spill control</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>Vertical tank with RPB under tank and spill control</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>Double-wall AST</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>AST with secondary containment dike/berm</td>
<td>yes</td>
<td>1</td>
</tr>
</tbody>
</table>
TABLE 5.5 USE THE FOLLOWING DESIGNATIONS:

5.5.1 P – Periodic AST inspection
Refer to Section 6

5.5.2 E – Formal external inspection by certified inspector
Refer to Section 7

5.5.3 I – Formal internal inspection by certified inspector
Refer to Section 8

5.5.4 L – leak test by owner or owner’s designee
Refer to Section 9

5.5.5 () indicates maximum inspection interval in years. For example, E (5) indicates formal external inspection every 5 years.

TABLE 5.5 TABLE OF INSPECTION SCHEDULES

<table>
<thead>
<tr>
<th>AST Type and Size (U.S. gallons)</th>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shop-Fabricated ASTs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 1100 (0-4164 liters)</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>1101 - 5,000 (4168-18,927 liters)</td>
<td>P</td>
<td>P, E&L(10)</td>
<td>[P, E&L(5), I(10)] or [P, L(2), E(5)]</td>
</tr>
<tr>
<td>5,001 - 30,000 (18,931-113,562 liters)</td>
<td>P, E(20)</td>
<td>[P, E(10), I(20)] or [P, E(5), L(10)]</td>
<td>[P, E&L(5), I(10)] or [P, L(1), E(5)]</td>
</tr>
<tr>
<td>Portable Containers</td>
<td>P</td>
<td>P</td>
<td>P**</td>
</tr>
</tbody>
</table>

** Owner shall either discontinue use of portable container for storage or have the portable container DOT (Department of Transportation) tested and recertified per the following schedule (refer to Section 9.0):
- Plastic portable container - every 7 years
- Steel portable container - every 12 years
- Stainless Steel portable container - every 17 years
For Tier I Qualified Facilities

The Plan Template specifies the visual inspections (it’s based on STI SP001)

ATTACHMENT 3.2 – Bulk Storage Container Inspection Schedule – onshore facilities (excluding production):

To comply with integrity inspection requirement for bulk storage containers, inspect/test each shop-built aboveground bulk storage container on a regular schedule in accordance with a recognized container inspection standard based on the minimum requirements in the following table.

<table>
<thead>
<tr>
<th>Container Size and Design Specification</th>
<th>Inspection requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable containers (including drums, totes, and intermodal bulk containers (IBC))</td>
<td>Visually inspect monthly for signs of deterioration, discharges or accumulation of oil inside diked areas</td>
</tr>
<tr>
<td>55 to 1,100 gallons with sized secondary containment</td>
<td>Visually inspect monthly for signs of deterioration, discharges or accumulation of oil inside diked areas plus any annual inspection elements per industry inspection standards</td>
</tr>
<tr>
<td>1,101 to 5,000 gallons with sized secondary containment and a means of leak detection*</td>
<td>Visually inspect monthly for signs of deterioration, discharges or accumulation of oil inside diked areas, plus any annual inspection elements and other specific integrity tests that may be required per industry inspection standards</td>
</tr>
<tr>
<td>1,101 to 5,000 gallons with sized secondary containment and no method of leak detection*</td>
<td></td>
</tr>
</tbody>
</table>

* Examples of leak detection include, but are not limited to, double-walled tanks and elevated containers where a leak can be visually identified.
4.0 AST INSPECTOR QUALIFICATIONS

4.1 OWNER’S INSPECTOR QUALIFICATIONS
4.1.1 Periodic inspections are to be performed by an owner’s inspector.
4.1.2 The personnel performing these inspections shall be knowledgeable of storage facility operations, the type of AST and its associated components, and characteristics of the liquid stored.

4.2 CERTIFIED INSPECTOR QUALIFICATIONS
4.2.1 Formal external and formal internal tank inspections are to be performed by a certified inspector.
4.2.2 A Certified inspector shall be certified by one or more of the following:
4.2.2.1 American Petroleum Institute (API) Standard 653 Authorized Inspector Certification with STI SP001 Adjunct Certification.
4.2.2.2 Steel Tank Institute (STI) Certified SP001 AST Tank System Inspector
4.2.2.3 Additional certifications as may be required by individual states or other governing bodies.
Example STI SP001 Report

Environmental Inspection Services
757--------------------------/Office 757--------------------------/Fax
www.

STI SP001
Engineering Report – Tank # 1

Prepared for
Air Travel & Associates
East Port, USA
March 28, 2006

CERTIFICATION

The following certification pertains to the inspection of tank # 1 located at Air Travel & Associates in East Port, USA on March 27, 2006.

"I certify under penalty of law that this document and all attachments were prepared by me. The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations."

Jason B, STI Inspector – # 604-03

Signatures:

Jason B, STI Inspector, Cert No. 604-03

Review:

Benavides B, Mechanical Engineer, AWS# 05030364
4.0 INSPECTION

4.1 Results:

4.1.1 Containment: The tank sits in a concrete containment. The containment was evaluated during the inspection. Minor to moderate cracks are present in the containment walls and floor. The containment is equipped with a drain which drains into an oily water separator. The truck fill area is graded to drain into the oily water separator.

4.1.2 Foundation: The tank sits on two (2) steel saddles bolted to concrete piers. The saddles and concrete piers were evaluated during the inspection. No structural discrepancies are present on the steel saddles. The saddles are seal welded to the tank shell. The welds were evaluated during the inspection. The welds are in satisfactory condition. No cracks are present in the concrete piers. The concrete piers and the steel saddles are structurally sound and in satisfactory condition.

4.1.3 Ends: The tank ends are butt welded. The welds were evaluated during the inspection. The welds are in satisfactory condition and are structurally sound. No structural discrepancies are present on the tank ends. The tank ends were evaluated utilizing ultrasonic technology. Ultrasonic thickness measurements are listed in the engineering data in Appendix A. Ultrasonic thickness measurements show the tank ends to be structurally sound and in satisfactory condition.

4.1.4 Shell: The tank shell is butt welded. The welds were evaluated during the inspection. The welds are in satisfactory condition. No structural discrepancies are present on the tank shell. The tank shell was evaluated for remaining metal thickness utilizing ultrasonic technology. Thickness measurements are listed in the engineering data in Appendix A.

4.1.5 Shell Appurtenances: The nozzles were evaluated in accordance with UL-142 & NFPA-30. All containment and associated product piping was evaluated during the inspection. The piping is satisfactory and it is properly supported. The product issue and tank fill lines are equipped with fusible link valves. The valves are in satisfactory condition. The tank is equipped with two (2) vapor recovery vents. The vents were evaluated and are in satisfactory condition. The ladder was evaluated and it is structurally sound. The tank is equipped with an ATG to gauge the product level in the tank. The ATG was evaluated and is in satisfactory condition. The tank has a 24” manway on top of the tank. An 8” emergency vent is present on the manway. Per UL-142 section 8.0 the 8” emergency vent presently in use does not provide adequate means of emergency ventilation. The minimum required for a 20,000 gallon with a wetted surface of 918 ft² tank is 10” in diameter and 524,000 CFH in capacity. The tank is grounded via grounding straps.

4.1.6 Paint/Insulation: Over the course of the inspection the coating on the tank and associated piping was evaluated. The tank and piping coating is in satisfactory condition.
Integrity Testing of Other Tank Types
Fiberglass Reinforced Plastic Tank Inspections

- FTPI-2005-2 “Standard for In-service Inspections of Aboveground Atmospheric Fiberglass Reinforced Plastic Tanks and Vessels”

- Periodic inspection of the inside of the tank is important when assessing performance
 - Once a year is a good frequency for aggressive service conditions
 - Every two years in less aggressive service (such as water, non-high temp oils, etc)
Rotationally Molded Polyethylene Tanks
Section 7

Training & Procedures
(as applicable to APSA tank facilities)
Procedural-Related Compliance Requirements

Facility must have in place/implement:

- Procedures for routine handling of oil
 - Loading, unloading, movement and facility transfers, key maintenance, etc.

- Procedures for overfill prevention and discharge control

- Procedures for inspections and periodic testing

- Procedures for inspecting and discharging contained or accumulated stormwater

Significant flexibility

- Must be 'adequate' for the facility

Reference and describe in Plan

- Not addressed in the Template (doh!)
4.3 Facility Loading and Unloading Operations (§112.7 (h), §112.8 (d))

Section 112.7(h) of the SPCC rules specifies a secondary containment system for tank car and tank truck loading and unloading racks. To insure that no petroleum products, hazardous material or oil will be released to the environment, a secondary containment system will be designed and constructed to hold at least the maximum capacity of any single compartment of a tank car or tank truck loaded or unloaded at the facility.

A summary of the petroleum products, hazardous material or oil loading/unloading operations include:

- Truck will be placed in contained loading/unloading location.
- Trailer wheels will be air-locked.
- Proper spillage container will be placed under trailer outlet.
- Transfer line will be connected from truck to tank.
- The transfer will be monitored by the Job Site Environmental Coordinator (JSEC) or the delivery truck driver via a direct vision gauge. (Note: Automated systems meet this requirement as well, including high level alarms and high level pump cutoffs) (§112.8 (c)(6))
- Lines, hoses and valves will be routinely checked during transfer.
- Tank and truck valves will be confirmed to be closed before disconnecting hose.
- A sign will be posted at the diesel transfer location reminding drivers to confirm complete disconnection of flexible or fixed transfer line prior to departing.
- Material collected in spill containers will be added to the material AST.

4.4 Facility Drainage (§112.7 (a)(3), §112.8(b))

Discharge valves in containment structures will normally be closed. Stormwater collected in the structurally sound containment areas will be visually examined. If the materials stored in the secondary containment area will produce non-visible contamination in stormwater, water samples will be taken. If visual and/or sampling data indicates it is free of pollutants it will be discharged to the surrounding area. Records of these discharges will be kept with the SPCC plan (Appendix B).

If the stormwater appears to be contaminated, it will be pumped from the containment area and disposed at an appropriate facility.
CONSISTENCY
It's only a virtue if you're not a screwup.
What you say vs what you do
Procedures

4.9 Truck Loading/Unloading Requirements (40 CFR 112.7(h))

Fuels and lubricants are stored in the Fuels Area immediately adjacent to the maintenance shop. The proximity of the shop to the Fuels Area allows for close oversight of loading/unloading operations and rapid response should a release occur. Most fill and dispensing connections are located within secondary containment areas, which minimize the opportunity for releases. Where such design is impractical, loading/unloading areas must be bordered to avoid releases. Spill kits (sorbent materials) are located at various locations throughout the site to allow quick response to any release.

4.9.1 Secondary Containment (40 CFR 112.7(h)(1))

The Fuels Area (largest tank 3000 gallon) and the Form Oil tank (400-gallon) are the regulated bulk storage tanks on-site. Neither currently has a loading pad, a catchment basin or a treatment system for the fueling truck. BMP 2: Fuels Loading/Unloading Procedure addresses the alternate procedures outlined in 40 CFR 112.7(h)(2), such as inspections and checking of fueling vehicles to avoid accidental releases.

Regulated tanks, totes, and drums are located on secondary containment to minimize the potential for releases to the environment. Containment structures are inspected monthly and annually to maintain their integrity. Additionally, spill kits (sorbent materials) are located at various locations throughout the site to allow for quick response to any release.

4.9.2 Loading/Unloading Procedures (40 CFR 112.7(h)(2) and (3))

Vehicles used to transport fuels and petroleum products regulated by the SPCC rule, at the site meet applicable Department of Transportation (DOT) requirements. A employee is typically present during loading/unloading operations to verify product delivery, assure proper connections, safeguard against spills caused by poor connections or premature departure while fill hoses are connected, and facilitate response actions or spill cleanup, if a spill should occur.

SPCC PLAN – BEST MANAGEMENT PRACTICE

BMP No. 2: Tank Loading / Unloading Procedure

PRIOR TO UNLOADING
- If a spill containment apron is present the truck must be inside the containment.
- Visually check all hoses for leaks and wet spots.
- Gauge the tank and record on form (clipboard maintained in Maintenance Shop) to ensure that there is sufficient volume in the storage tank.
- Lock in the closed position any drainage valves for the secondary containment structure.
- Secure the tank vehicle with chocks and inter locks.
- Ensure the vehicle’s parking brake is set.
- Verify proper alignment of valves and proper functioning of the pump system.
- Establish adequate bonding/grounding prior to connecting to the fuel transfer point.
- Turn off cell phone.

DURING UNLOADING
- Driver must stay with the vehicle at all times during unloading activities.
- Periodically inspect all systems, hoses, and connections.
- Ensure that no leaks are detected by sight, sound or smell during fuel unloading.
- When loading, keep internal and external valves on the receiving tank open along with the pressure relief valves.
- When making a connection, shut off the engine. When transferring Class 3 materials, shut off the vehicle engine unless it is used to operate a pump.
- Monitor the liquid level in the receiving tank to prevent overflow.
- Monitor flow meters to determine rate of flow.
- When topping off the tank, reduce flow rate to prevent overflow.
- Report and clean up any spills according to SPCC Plan.
- Call Br. 74 to report any spills.

AFTER UNLOADING
- Make sure the transfer is complete.
- Close all tank and loading valves before disconnecting.
- Securely close all vehicle internal, external and dome cover valves before disconnecting.
- Secure all hatches.
- Disconnect grounding/bonding wires.
- Make sure the hoses are drained to remove the remaining fuel before moving them away from the connection. Use a drip pan.
- Cap the end of the hose and other connecting devices before moving them to prevent uncontrolled leakage.
- Remove wheel chocks and interlocks.
- Inspect the lowermost drain and all outlets on the tank truck prior to departure. If necessary tighten, adjust, or replace caps, valves, or other equipment to prevent fuel leakage while in transit.
PROCEDURE FOR TANK FILL FROM REMOTE FILL PUMP

1. CONNECT TRUCK GROUND TO GROUNDED OUTLET.
2. CONNECT VAPOR RECOVERY AND PRODUCT HOSES.
3. UNLOCK PRODUCT BALL VALVE AND KEY SWITCH COVER FOR PRODUCT TO BE RECEIVED
 - RED VALVE - PREMIUM GRADE
 - BLUE VALVE - REGULAR GRADE
4. OPEN PRODUCT BALL VALVE AT THE SOUTHEAST CORNER OF THE TANK FARM.
5. CHECK VEEDEE ROOST MONITORING SYSTEM TO CONFIRM THAT TANKS HAVE THE ABILITY TO RECEIVE THE VOLUME OF PRODUCT TO BE DELIVERED.
6. OPEN PUMP OUTLET BALL VALVE AND APPROPRIATE PRODUCT VALVE AT THE PUMP MANIFOLD.
7. OPEN PUMP INLET BALL VALVE SLOWLY OPEN PUMP INLET BUTTERFLY VALVE.
8. AFTER OPENING BOTH INLET VALVES, WAIT APPROXIMATELY SIXTY (60) SECONDS TO ALLOW PRODUCT TO ENTER PUMP BEFORE STARTING THE PUMP.
9. TO START PUMP:
 - REGULAR - CHOOSE TANK TO BE PUMPED INTO BY TURNING KEY SWITCH TO THE RESPECTIVE TANK, I.E. TANK 1 OR TANK 2
 - PREMIUM - TURN KEY SWITCH TO THE PUMP RUN POSITION. PUSH PUMP START BUTTON.
10. WATCH THE INDICATOR LIGHTS FOR THE TANK IN WHICH THE PRODUCT IS BEING PUMPED INTO.
 - GREEN - PUMP RUNNING, TANK LEVEL BELOW 80%
 - YELLOW - PUMP RUNNING, TANK LEVEL BETWEEN 80% AND 90%
 - RED - PUMP STOPPED, TANK LEVEL ABOVE 90%
11. SHOULD THE RED INDICATOR LIGHT ILLUMINATE AND THE PUMP STOP RUNNING DURING UNLOADING OPERATION, DO THE FOLLOWING:
 - REGULAR TANK - CHANGE KEY POSITION AND PUMP BALANCE OF LOAD INTO THE OTHER TANK.
 - PREMIUM - CEASE UNLOADING - CHECK WITH OTA REPRESENTATIVE FOR FURTHER INSTRUCTION.
12. WHEN THE TRUCK COMPARTMENT BEING LOADED IS EMPTY, CLOSE PUMP INLET VALVE, PUSH STOP BUTTON, DISCONNECT AND RECONNECT HOSES FOR THE NEXT COMPARTMENT.
13. AT THE CONCLUSION OF THE OFF-LOADING OPERATION, CLOSE PUMP INLET BUTTERFLY AND BALL VALVE DISCONNECT HOSES. CLOSE PRODUCT VALVES AT THE TANK FARM. CLOSE PUMP OUTLET VALVE, CLOSE AND LOCK PRODUCT VALVES AND THE KEY SWITCH. DISCONNECT GROUND CABLE.

NOTE: PLEASE NOTIFY THE ENVIRONMENTAL AFFAIRS OFFICE TO REPORT ANY SPILL OR LEAKS.
PHONES NUMBER: [REDACTED]
Fuel Storage Tank Delivery and Fuel Filtering Procedure and Checklist:
Roybal Comprehensive Health Center

This procedure applies to the refueling of the 1,500 gallon above ground fuel storage tank (AST) located at the Roybal Comprehensive Health Center. It is also applicable to the filtering of the fuel via vendor truck. The procedure is intended to prevent overfills of the tank, spillage as a result of fueling activities, and to ensure compliance with the Spill Prevention, Control and Countermeasures (SPCC) Plan.

Prior to fueling:
- The county employee escort and the delivery driver shall confirm the ullage in the tank (ullage refers to the available space remaining in the tank). For this tank, this can be done by:
 - Checking the tank level monitor on the top of the tank; or
 - Sounding (sticking) the tank with the designated measuring stick (the measuring sticks are tank-specific and must be used in combination with the tank-specific inches to gallons conversion chart); **The maximum fill volume of the tank is 90% capacity.**

- Prior to connecting any hoses to the tank or beginning any transfer:
 - The fuel truck parking brake must be firmly set;
 - The fuel truck wheels must be chocked;
 - Traffic warning cones or other traffic warning barriers must be properly placed behind the truck while it is parked along 3rd Street. The truck's hazard warning lights must also be activated.
 - Traffic warning cones, gates or other traffic warning barriers must be placed in the employee driveway/ramp to prevent any vehicles from driving over the filling hose.
 - Check to be sure spill control supplies are stocked and readily available.
 - Inspect the fill hose for cracks, wear or damage prior to transfer. Also check the hose connections/fittings if more than one hose length are connected.

- Place a drip pan is placed under the hose connections to avoid potential drips on the ground.
 - A 5 gallon bucket should be used under the hose/truck connection;
 - Smaller pans can be used under the mid-hose connections.

During fueling or filtering:
- The operation must be constantly attended by the county employee escort and the delivery driver. In no event can the truck or the tank fill port be left unattended while the connections are in place or tank fill ports open. This may require two vendor personnel – one at the truck, one at the tank fill port.

- Ensure that the tank level NEVER EXCEEDS 90% CAPACITY during the process by using the prior-to-fill readings from the gauge or tank sounding to determine the appropriate quantity of fuel to add.
 - If an overfill condition occurs (note the wall mounted high level alarm at the fill port), contact the Chief Engineer’s Office and report status.
 - Sometimes, when using the truck mounted fuel transfer pump, the fuel will start foaming and activate the “high level alarm”. If this occurs, slow down the transfer to avoid false alarms and monitor ullage.

- Always clean up any drips or incidental spills that may occur during refueling or fill hose retraction. If a major spill occurs, call the emergency operator at extension 111 or 323-227-0410 from any phone.

After fueling:
- The tank fill port must be securely closed, and verified by the county employee to be securely closed.
Training

Two types of training required by 40 CR 112.7(f)

- 'Detailed' SPCC Plan and implementation training
 - No specified frequency
- Spill prevention briefings
 - Annual

1. Detailed SPCC Training (40 CFR 112.7(f)(1))

Training for **oil-handling employees and those with oil spill prevention responsibilities**. At a minimum, must include:

- Applicable pollution control laws and regulations
- Operation & maintenance of oil discharge prevention systems/equipment
- Discharge prevention procedures and protocols
- General facility operations
- SPCC plan contents and understanding of the Plan
Training

2. Annual spill prevention briefings for oil handling personnel (40 CFR 112.7(f)(1))
 - to assure adequate understanding of the SPCC Plan for the facility
 - Briefings must highlight and describe:
 - Known discharges as described in §112.1(b) or
 - Failures, malfunctioning components, and
 - Any recently developed precautionary measures

Should describe the training and briefing program in the Plan
 - Plan template contains a training/briefing log as Attachment 3.4)
 - Records of training not specifically required non-qualified facilities or Tier II qualified facilities
Designated Accountable Person

The facility must designate a person at the facility who is accountable for discharge prevention and who reports to facility management.

40 CFR 112.7(f)(2)

- Identify name and title in Plan (or Table G-5 of Template)
Section 8
Spill Planning, Notifications, and Response
(as applicable to APSA tank facilities)
Control/Response Measures or Procedures

Response provisions

- Must have a plan/procedures to respond to oil spills... generally describe them in the Plan (or Table G-7 in Template)
 - May consist of use of outside response agencies and contractors
 - Must include internal notification and communication
 - Table G-8 in Template
 - Must include outside agency notification
 - Tables G-9 & G-20 in Template (but that's federal only...)
 - Should include some interim control measures
 - Describe in Table G-7 in Template
 - Full secondary containment compliance eases contingency plan requirements
Control/Response Measures or Procedures

Response provisions

Use of Business Emergency Plan?

- OK...summarize in the Plan or Template and include the BEP as a reference...but
- Must include sufficient detail (such as clean up, use of contractors, repair/reinspection, EPA notification for navigable water spills, etc.)
- Must also have ‘management commitment’ statement

Look! It’s Kristen Reigel! We’re saved! Oh Great Holy Smokin’ Monkey, we’re SAVED!!!
Control/Response Measures or Procedures

Countermeasures provisions

- Written management commitment of manpower, materials, equipment, $$ to control spills and assure cleanup
Importance of Secondary Containment

Besides the obvious… If secondary containment and other diversionary means are determined by the PE to be ‘impractical’:

- Impracticality determination must be detailed in the Plan
- Must do integrity testing… and:
- Plan must include a specific ‘Oil Spill Contingency Plan’
 - Must meet requirements of 40 CFR 109 (EPA guidance available):
 - Authorities, responsibilities, and duties of all persons, organizations, or agencies involved in oil removal operations
 - Notification procedures for the purpose of early detection and timely notification of an oil discharge
 - Provisions to ensure that full resource capability is known and can be committed during an oil discharge
 - Provisions for well-defined and specific actions to be taken after discovery and notification of an oil discharge
 - Procedures to facilitate recovery of damages and enforcement measures
§ 109.5 Development and implementation criteria for State, local and regional oil removal contingency plans.

Criteria for the development and implementation of State, local and regional oil removal contingency plans are:

(a) Definition of the authorities, responsibilities and duties of all persons, organizations or agencies which are to be involved or could be involved in planning or directing oil removal operations, with particular care to clearly define the authorities, responsibilities and duties of State and local governmental agencies to avoid unnecessary duplication of contingency planning activities and to minimize the potential for conflict and confusion that could be generated in an emergency situation as a result of such duplications.

(b) Establishment of notification procedures for the purpose of early detection and timely notification of an oil discharge including:

(1) The identification of critical water use areas to facilitate the reporting of and response to oil discharges.

(2) A current list of names, telephone numbers and addresses of the responsible persons and alternates on call to receive notification of an oil discharge as well as the names, telephone numbers and addresses of the organizations and agencies to be notified when an oil discharge is discovered.

(3) Provisions for access to a reliable communications system for timely notification of an oil discharge and incorporation in the communications system of the capability for interconnection with the communications systems established under related oil removal contingency plans, particularly State and National plans.

(4) An established, prearranged procedure for requesting assistance during a major disaster or when the situation exceeds the response capability of the State, local or regional authority.

(c) Provisions to assure that full re-source capability is known and can be committed during an oil discharge situation including:

(1) The identification and inventory of applicable equipment, materials and supplies which are available locally and regionally.

(2) An estimate of the equipment, materials and supplies which would be required to remove the maximum oil discharge to be anticipated.

(3) Development of agreements and arrangements in advance of an oil discharge for the acquisition of equipment, materials and supplies to be used in responding to such a discharge.

(d) Provisions for well-defined and specific actions to be taken after discovery and notification of an oil discharge including:

(1) Specification of an oil discharge response operating team consisting of trained, prepared and available operating personnel.

(2) Predesignation of a properly qualified oil discharge response coordinator who is charged with the responsibility and delegated commensurate authority for directing and coordinating response operations and who knows how to request assistance from Federal authorities operating under existing national and regional contingency plans.

(3) A preplanned location for an oil discharge response operations center and a reliable communications system for directing the coordinated overall response operations.

(4) Provisions for varying degrees of response effort depending on the severity of the oil discharge.

(5) Specification of the order of priority in which the various water uses are to be protected where more than one water use may be adversely affected as a result of an oil discharge and where response operations may not be adequate to protect all uses.
Spill and Release Reporting

- In addition to any local & state reporting

Two main federal oil discharge requirements:

1. Specific to SPCC facilities:
 - Report to the EPA Regional Admin. discharges of:
 - More than 1,000 gallons of oil in a single discharge to navigable waters or adjoining shorelines
 - More than 42 gallons of oil in each of two discharges to navigable waters or adjoining shorelines within a rolling 12-month period
 - It’s the amount of oil in gallons that reached the navigable waters
 - Facility owner/operator must report to EPA within 60 days
 - Detailed report content - including failure analysis and corrective actions taken (make sure the Plan describes the report to be filed)
2. General to oil discharges (from any facility):

- Report to the National Response Center any amount of oil discharge that:
 - Violates state water quality standards
 - Causes a film or sheen upon the water
 - Leaves sludge or emulsion beneath the surface

- Facility owner/operator must report to NRC immediately
 - Moderate report content (make sure the Plan describes the notification process, phone # [800-424-8802], etc.)
 - Penalties likely to accrue if report not made within 15 minutes of discovery
SPILL REPORT FORM

A copy of this Form must be completed and filed in Appendix L of this Plan for each incident. Review Appendix E, BMP No. 6: Release / Spill Documentation & Notification Procedures to determine if the release must be reported.

Please fill out the form as completely as possible before calling the National Response Center at the phone number listed below. Fields in RED are mandatory entries.

<table>
<thead>
<tr>
<th>IS THIS A DRILL REPORT?</th>
<th>Yes/No</th>
<th>YOUR E-MAIL ADDRESS:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>REPORTING PARTY</th>
<th>RESPONSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone 1: Type(e.g. Primary/Cell/On-Scene/Pager/Other)</td>
<td>Last Name:</td>
</tr>
<tr>
<td>Phone 1: Type(e.g. Primary/Cell/On-Scene/Pager/Other)</td>
<td>First Name:</td>
</tr>
<tr>
<td>Phone 1: Phone 1</td>
<td>Phone 1: Type: Primary/Cell/On-Scene/Pager/Other</td>
</tr>
<tr>
<td>Phone 2: Phone 2</td>
<td>Phone 2: Type: Primary/Cell/On-Scene/Pager/Other</td>
</tr>
<tr>
<td>Phone 3: Phone 3</td>
<td>Phone 3: Type: Primary/Cell/On-Scene/Pager/Other</td>
</tr>
<tr>
<td>Company:</td>
<td>Company:</td>
</tr>
<tr>
<td>Org Type:</td>
<td>Org Type:</td>
</tr>
<tr>
<td>Address:</td>
<td>Address:</td>
</tr>
<tr>
<td>City:</td>
<td>City:</td>
</tr>
<tr>
<td>State:</td>
<td>State:</td>
</tr>
<tr>
<td>Zip:</td>
<td>Zip:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TANK/CONTAINER DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank/Container Description:</td>
</tr>
<tr>
<td>Above/Below Ground:</td>
</tr>
<tr>
<td>Regulated (Yes/No/Unknown)?</td>
</tr>
<tr>
<td>Tank/Container Capacity</td>
</tr>
<tr>
<td>Include Units (e.g. Gals/l iter/ton etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL INVOLVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL IN WATER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount in Water: Include Units:</td>
</tr>
<tr>
<td>Offshore (Yes/No/Unknown)?</td>
</tr>
<tr>
<td>River Mile Marker:</td>
</tr>
<tr>
<td>Water Supply Contaminated (Yes/No/Unknown)?</td>
</tr>
<tr>
<td>Wave Condition (e.g. Calm/Rough/Confused): N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHEEN INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheen Length: Units:</td>
</tr>
<tr>
<td>Color:</td>
</tr>
<tr>
<td>Odor Description:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMPACT INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Affected (Select one): Air/Land/Sol/Subsurface/Water/Rail/Report/Drill/Other/Unknown</td>
</tr>
<tr>
<td>Detailed Medium Information:</td>
</tr>
<tr>
<td>Fire:</td>
</tr>
<tr>
<td>Injuries:</td>
</tr>
<tr>
<td>Fatalities:</td>
</tr>
<tr>
<td>Evacuations:</td>
</tr>
<tr>
<td>Damages:</td>
</tr>
<tr>
<td>Road Closed?</td>
</tr>
</tbody>
</table>
A simpler form is in the Template as Attachment 4 (Table G-20)

<table>
<thead>
<tr>
<th>Track Closed?</th>
<th>Yes/No/Unknown</th>
<th>Track:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Corridor Closed?</td>
<td>Yes/No/Unknown</td>
<td>Air Corridor:</td>
</tr>
<tr>
<td>Waterway Closed?</td>
<td>Yes/No/Unknown</td>
<td>Waterway:</td>
</tr>
<tr>
<td>Community Impact Due to Material? Yes/No/Unknown</td>
<td>Media Interest (High/Medium/Low/None):</td>
<td></td>
</tr>
</tbody>
</table>

WEATHER INFORMATION

- Weather Conditions (Describe):
- Air Temperature: Fahrenheit/Celsius
- Wind Speed: Unit: Knots/MPH
- Wind Direction:

REMEDIAL ACTION INFORMATION

- Remedial Action Taken:
- Release Secured? Yes/No/Unknown
- Duration of Release (Include Units e.g. Second/Minute/Week etc.):
- Rate of Release?: Units: Per (Sec/Min/Hr/Day/Week etc.): |

ADDITIONAL AGENCY INFORMATION

- Federal Agency Notified (name and time):
- State/Local Agency Notified (name and time):
- State/Local Agency On-Scene (name and time):
- Lead Agency’s Report Number:

ADDITIONAL INFORMATION

- Additional Information:
Spill and Release Reporting

California Reporting

- **Handler must, upon discovery, immediately report any release or threatened release of a hazardous material**
 - Immediate reporting not be required if there is a reasonable belief that the release or threatened release poses no significant present or potential hazard to human health and safety, property, or the environment.

- **Must also report any amount of oil discharged to 'waters of the state'**

- **Report to:**
 - CUPA
 - OES Warning Center
 - 911 (if necessary)
Spill and Release Reporting

California Reporting under APSA

- Spill or release of one bbl (> 42 gallons) of petroleum to 'waters of the state'
 - To OES and CUPA
- The regular Calif. Reporting should suffice.
Section 9

Tools and References
California Environmental Protection Agency
Unified Program Fact Sheet
December 2007

SUMMARY

The Unified Program Agencies (UPA's) have the responsibility and authority, to the extent provided by Chapter 6.67 and Sections 25404.1 and 25404.2 of the California Health and Safety Code, to implement and enforce the requirements of Chapter 6.67, the Aboveground Petroleum Storage Act (APSA). (Health & Saf. Code § 25270.5)

REQUIREMENTS OF APSA

1. Owner/Operator subject to Chapter shall: (Health & Saf. Code § 25270.4.5(a))
 A. Prepare a Spill Prevention Control and Countermeasure (SPCC) Plan in accordance with U.S. Code of Federal Regulations, Title 40, Part 112 (40CFR112) (see Attachment 1 for SPCC plan requirements)
 B. Conduct periodic inspections to assure compliance with 40CFR112 (inspections, tests, and records)
 C. Implement SPCC Plan in compliance with 40CFR112

2. An owner or operator of a tank facility that is exempt pursuant to subdivision 25270.4.5(b) shall take the following actions: (Health & Saf. Code § 25270.4.5(b))
 A. Conduct a daily visual inspection of any aboveground storage tank storing petroleum
 B. Allow the UPA to conduct a periodic inspection of the tank facility
 C. If the UPA determines installation of secondary containment is necessary for the protection of the waters of the state, install secondary means of containment for each tank or group of tanks where the secondary containment will, at a minimum, contain the entire contents of the largest tank protected by the secondary containment plus precipitation

3. At least once every three years, the UPA shall inspect each storage tank or a representative sampling of the storage tanks at each tank facility that has a storage capacity of 10,000 gallons or more of petroleum. (Health & Saf. Code § 25270.5)
 A. The purpose of the inspection shall be to determine whether the owner or operator is in compliance with the SPCC Plan requirements of the APSA
 B. The UPA may develop an alternative inspection and compliance plan, subject to approval by the Secretary for Environmental Protection (Secretary)

California Environmental Protection Agency
Unified Program Fact Sheet
Aboveground Petroleum Storage Act – Scope of CUPA Implementation

C. An inspection conducted pursuant to this section does not require the oversight of a professional engineer.
D. The person conducting the inspection shall meet both of the following requirements:
 a. Complete an aboveground storage tank training program, which shall be established by the Secretary.
 b. Satisfactorily pass an examination developed by the Secretary on the SPCC plan provisions and safety requirements for aboveground storage tank inspections.

4. On or before January 1, 2009, and on or before January 1 annually thereafter, each owner or operator of a tank facility subject to the APSA shall file with the UPA a tank facility statement. (Health & Saf. Code § 25270.6(a))
 A. An owner or operator of a tank facility that submits a business plan satisfies the requirement to file a tank facility statement.

5. Each year, commencing in calendar year 2010, each owner or operator of a tank facility who is subject to the requirements of subdivision 25270.6(a) shall pay a fee to the UPA on or before a date specified by the UPA. (Health & Saf. Code § 25270.6(b))
 A. The governing body of the UPA shall establish a fee, as part of the single fee system implemented pursuant to Section 25404.5, at a level sufficient to pay the necessary and reasonable costs incurred by the UPA in administering the APSA, including, but not limited to, inspections, enforcement, and administrative costs.
 B. The UPA shall also implement the fee accountability program established pursuant to subdivision (c) of Section 25404.5 and the regulations adopted to implement that program.
 C. The UPA may provide a waiver of these fees when a state or local government agency submits a tank facility statement.

6. Each owner or operator of a tank facility shall immediately, upon discovery, notify the Governor's Office of Emergency Services and the UPA of the occurrence of a spill or other release of one barrel (42 gallons) or more of petroleum that is required to be reported pursuant to subdivision (a) of Section 13272 of the Water Code. (Health & Saf. Code § 25270.6)

CONTACT
John Paine
Cal/EPA Unified Program
(916) 327-6092 or johnp@ca.legis.ca.gov
11-05 EPA Guidance

- Amended Feb & Mar 06
 - Will be updated in 2009 (?) to address 11-08 amendments
- A great compliance tool
- Includes sample SPCC Plans and Contingency Plans, etc.
 - Sample plans available in Word
 - www.epa.gov/oilspill
- Includes examples and diagrams
- On CD and at
 - http://www.epa.gov/emergencies/content/spcc/index.htm

SPCC Guidance for Regional Inspectors

Version 1.0
November 28, 2005

U.S. Environmental Protection Agency
Office of Emergency Management
Regulation and Policy Development Division

The Oil Pollution Prevention regulation includes requirements for facilities to prepare, amend, and implement Spill Prevention, Control, and Countermeasure (SPCC) Plans to prevent discharges of oil to navigable waters and adjoining shorelines. The regulation allows flexibility in meeting some of the requirements. This document is designed to assist regional inspectors in implementing the SPCC program and in understanding its applicability.
TABLE OF CONTENTS

DISCLAIMER ... vi
OIL PROGRAM CONTACTS ... ix
ACRONYMS LIST ... xii

INTRODUCTION .. 1-1

1.1 SPCC Background .. 1-1
 1.1.1 Purpose and Scope ... 1-1
 1.1.2 Statutory Framework ... 1-2

1.2 Regulatory History .. 1-3
 1.2.1 Initial Promulgation .. 1-3
 1.2.2 SPCC Task Force and GAO Recommendations 1-5
 1.2.3 Proposed Revisions .. 1-7
 1.2.4 Final Rule Revision ... 1-8
 1.2.5 Compliance Date Amendments 1-8

1.3 Revised Rule Provisions .. 1-9
 1.3.1 Rule Organization .. 1-10
 1.3.2 Summary of Major Revisions 1-11

1.4 Using This Guidance .. 1-12

APPlicABILITY OF THE SPCC RULE 2-1

2.1 Introduction .. 2-1
 2.1.1 Summary of General Applicability 2-1

2.2 Definition of Oil and Activities Involving Oil 2-3
 2.2.1 Animal Fats and Vegetable Oils 2-3
 2.2.2 Synthetic Oils .. 2-3
 2.2.3 Determination of “Oil” for Natural Gas and Hazardous Substances ... 2-4
 2.2.4 Activities Involving Oil 2-5

2.3 “Non-transportation-related” Facilities – EPA/DOT Jurisdiction .. 2-6
 2.3.1 Definition of Facility .. 2-6
 2.3.2 Determination of Transportation-related and Non-transportation-related Facilities 2-8

2.3.3 EPA/DOT Jurisdiction Scenarios 2-9

2.4 Reasonable Expectation of Discharge to Navigable Waters in Quantities That May Be Harmful 2-10
 2.4.1 Definition of “Discharge” and “Discharge as Described in §112.1(b)” ... 2-12
 2.4.2 Reasonable Expectation of Discharge 2-13

2.5 Storage Capacity ... 2-16
 2.5.1 Capacity Thresholds ... 2-16
 2.5.2 Storage Capacity Calculation 2-16
 2.5.3 Definition of Storage Capacity 2-17
 2.5.4 Tank Re-rating .. 2-18

2.6 Exemptions to the Requirements of the SPCC Rule 2-20
 2.6.1 Facilities Subject to Minerals Management Service Regulations .. 2-20
 2.6.2 Underground Storage Tanks 2-20
 2.6.3 Wastewater Treatment Facilities 2-20

2.7 Determination of Applicability by the Regional Administrator ... 2-21

2.8 SPCC Applicability for Different Types of Containers 2-23
 2.8.1 Bulk Storage Container .. 2-23
 2.8.2 Oil-filled Equipment .. 2-23

2.9 Determination of Applicability of Facility Response Plans 2-24
 2.10 Role of the EPA Inspector 2-26

ENVIRONMENTAL EQUIVALENCE ... 3-1

3.1 Introduction .. 3-1

3.2 Substantive Requirements Subject to the Environmental Equivalence Provision 3-3

3.3 Policy Issues Addressed by Environmental Equivalence .. 3-4
 3.3.1 Security ... 3-5
 3.3.2 Facility Drainage .. 3-7
 3.3.3 Corrosion Protection and Leak Testing of Completely Buried Metallic Storage Tanks 3-10
 3.3.4 Overfill Prevention ... 3-11
 3.3.5 Piping ... 3-12
 3.3.6 Evaluation, Inspection, and Testing 3-15

3.4 Review of Environmental Equivalence 3-16
 3.4.1 SPCC Plan Documentation 3-16
 3.4.2 Role of the EPA Inspector 3-18

SECONDARY CONTAINMENT AND IMPRACTICABILITY DETERMINATIONS 4-1

4.1 Introduction .. 4-1

4.2 Overview of Secondary Containment Provisions 4-2
 4.2.1 General Secondary Containment Requirement 4-3
 4.2.2 Specific Secondary Containment Requirements 4-10
 4.2.3 Role of the EPA Inspector in Evaluating Secondary Containment Methods 4-11
 4.2.4 Sufficient Freeboard .. 4-12
4.2.5 Role of the EPA Inspector in Evaluating Sufficient Freeboard 4-16
4.2.6 Passive versus Active Measures of Secondary Containment 4-16
4.2.7 Role of the EPA Inspector in Evaluating the Use of Active Measures of Secondary Containment 4-20
4.2.8 "Sufficiently Impervious" 4-22
4.2.9 Role of the EPA Inspector in Evaluating "Sufficiently Impervious" 4-22
4.2.10 Facility Drainage (Onshore Facilities) 4-25
4.2.11 Role of the EPA Inspector in Evaluating Onshore Facility Drainage 4-27

4.3 Overview of the Impracticability Determination Provision 4-27
4.3.1 Meaning of "Impracticable" 4-28

4.4 Selected Issues Related to Secondary Containment and Impracticability Determinations 4-28
4.4.1 General Secondary Containment Requirements, §112.7(c) 4-29
4.4.2 Secondary Containment Requirements for Loading/Unloading Racks, §112.7(h)(1) 4-33
4.4.3 Secondary Containment Requirements for Onshore Bulk Storage Containers, §112.8(c)(2) 4-38
4.4.4 Secondary Containment Requirements for Mobile/Portable Containers, §112.8(c)(11) 4-39
4.4.5 Secondary Containment Requirements for Bulk Storage Containers at Production Facilities, §112.9(c)(2) 4-40
4.4.6 Secondary Containment Requirements for Onshore Drilling or Workover Equipment, §112.10(c) 4-41

5.1 Introduction 6-1
5.1.1 Purpose 6-1
5.1.2 Requirements for a Facility Diagram 6-1

5.2 Preparing a Facility Diagram 6-2
5.2.1 Level of Detail 6-3
5.2.2 Facility Description 6-3
5.2.3 Oil Containers 6-3
5.2.4 Mobile or Portable Containers 6-4
5.2.5 Completely Buried Storage Tanks 6-4
5.2.6 Piping and Manufacturing Equipment 6-5
5.2.7 Use of State and Federal Diagrams 6-7

5.3 Facility Diagram Examples 6-7
5.3.1 Example #1: Bulk Storage and Distribution Facility 6-7
5.3.2 Example #2: Manufacturing Facility 6-11
5.3.3 Example #3: Oil Production Facility 6-13

5.4 Review of a Facility Diagram 6-16
5.4.1 Documentation by Owner/Operator 6-16
5.4.2 Role of the EPA Inspector 6-16

5.5 Oil/Water Separators Used in Oil Production 5-11
5.5.1 Description of Oil/Water Separators Used in Oil Production 5-11
5.5.2 Applicability of the SPCC Rule to Oil/Water Separators Used in Oil Production 5-13

5.6 Documentation Requirements and the Role of the EPA Inspector 5-15
5.6.1 Documentation by Owner/Operator 5-15
5.6.2 Role of the EPA Inspector 5-16

5.7 Review of a Facility Diagram 6-16
5.7.1 Documentation by Owner/Operator 6-16
5.7.2 Role of the EPA Inspector 6-16

5.8 Inspection, Evaluation, and Testing 7-1
5.8.1 Introduction 7-1
5.8.2 Inspection, Evaluation, and Testing Under the SPCC Rule 7-2
5.8.3 Summary of Inspection and Integrity Testing Requirements 7-2
5.8.4 Regularly Scheduled Integrity Testing and Frequent Visual Inspection of Aboveground Bulk Storage Containers 7-6
5.8.5 Brittle Fracture Evaluation of Field-Constructed Aboveground Containers 7-6
5.8.6 Inspections of Piping 7-6
5.8.7 Flowline Maintenance 7-10
5.8.8 Role of Industry Standards and Recommended Practices in Meeting SPCC Requirements 7-12

5.9 Specific Circumstances 7-16
5.9.1 Aboveground Bulk Storage Container for Which the Baseline Condition Is Known 7-16
5.9.2 Aboveground Bulk Storage Container for Which the Baseline Condition Is Not Known 7-16

U.S. Environmental Protection Agency
Version 1.0, 11/28/2005
APPENDICES

Appendix A Text of CWA 311(j)(1)(c)
Appendix B Select Regulations - 40 CFR part 109, 110, and 112
Appendix C Summary of Revised Rule Provisions
Appendix D Sample Bulk Storage Facility SPCC Plan
Appendix E Sample Production Facility SPCC Plan
Appendix F Sample Contingency Plan
Appendix G SPCC Inspection Checklists
Appendix H Other Policy Documents
SPCC Plan Reminder

- **SPCC Plans** are simply the documentation of compliance programs and procedures.
 - It’s not just what you say... it’s how you carry it out
 - Operational personnel rarely read the Plan!

- **SPCC Plan** has force of federal and Calif. regulations.

- The **SPCC Plan** is a living document.
 - The Plan and the SPCC program must be part of a Management of Change process.

License: Never assume that just because someone holds a license, they know what they are doing.
For the fourth year in a row, the Original Costume Contest at ESCI EnviroServices’ annual Halloween party had no clear winner.