Scoping Report

June 2012

Mitsubishi Cement Corporation South Quarry Project

San Bernardino County Land Use Services Department
385 N. Arrowhead Avenue, First Floor
San Bernardino, CA 92415-0182

United States Forest Service
San Bernardino National Forest
Mountaintop Ranger District, California
Table of Contents

1.0 Introduction..1
 1.1 Project Description ..1
 1.2 Government Agency Reviews and Permits ...1
 1.3 Purpose and Need for the Project ..2
 1.4 Agency Coordination ...2
 1.4.1 Lead Agency ..2
 1.4.2 Cooperating Agency ...2

2.0 Scoping Process Summary ..3
 2.1 Notice of Intent ...3
 2.2 Notice of Preparation ...3
 2.3 Public Scoping Meetings ...3
 2.4 Written Comments ...3

3.0 Comment Summary and Analysis ..5
 3.1 Issues or Concerns Regarding the Project Description, Effects Analysis, and/or Mitigation Measures ..5
 3.2 Alternative Development and/or Alternative Design Criteria ..15
 3.3 Issues or Concerns Outside the Scope of the EIR/EIS ...15

Attachments
Attachment 1- Scoping Notes
Attachment 2- Scoping Comment Letters
1.0 INTRODUCTION

1.1 Project Description

Mitsubishi Cement Corporation (MCC) is proposing to develop and reclaim a new high grade limestone quarry to the south of its existing East Pit, its West Pit (under development), and the Cushenbury Cement Plant. The South Quarry would total approximately 153.6 acres consisting of a 128-acre quarry, a 2.7 acre landscape berm, a 22.2-acre haul road 1.8 miles in length, and a temporary construction road of 0.7 acres. The South Quarry and haul road would be located almost entirely (147.0 acres) on 440 acres of unpatented claims owned by MCC on the San Bernardino National Forest (SBNF) with approximately 6.6 acres of the haul road located on MCC fee land where it enters the existing East Pit. Rock from the South Quarry would be blended with rock from the existing East and West Pits to feed the existing Cushingbury Cement Plant. Mitsubishi Cement Corporation proposes to mine the South Quarry for approximately 120 years. No modification to the Cushingbury Cement Plant is proposed as part of this project. Based on drilling conducted in 2009 and 2010, the South Quarry site has estimated proven and inferred reserves of over 200 million tons of mostly high to medium grade limestone. This higher grade limestone would be blended with lower grade limestone excavated from the West and East Pits at a ratio of approximately 50/50 in order to meet the limestone specifications to feed the adjacent MCC Cushingbury Cement Plant. Concurrent reclamation would be conducted throughout the life of the quarry and, at the conclusion of excavations. Five years of active reclamation and revegetation would be implemented followed by revegetation monitoring and remediation until revegetation goals are achieved. The project will also require an amendment to the Desert Rim Place Scenic Integrity Objectives of the Forest Land Management Plan.

1.2 Government Agency Reviews and Permits

The County of San Bernardino will be the California Environmental Quality Act (CEQA) Lead Agency and will decide whether to approve the Reclamation Plan following the environmental analysis in the Environmental Impact Report/Environmental Impact Statement (EIR/EIS). The United States Forest Service (USFS) will be the National Environmental Policy Act (NEPA) lead agency for approving the Project and will decide whether or not to approve the Plan of Operation following the environmental analysis in the EIR/EIS. Other public agency approvals include:

- U.S. Fish and Wildlife Service– Section 7 Consultation with Forest Service through the Carbonate Habitat Management Strategy Plan
- California Department of Fish and Game (CDFG) – 1602 Streambed Alteration Agreement
- Regional Water Quality Control Board, Colorado River Region – 401 Water Quality Certification
1.3 Purpose and Need for the Project

Mitsubishi Cement Corporation’s Cushenbury Cement Plant requires a limestone feed of approximately 2.6 million tons per year of a specific blend of limestone in order to manufacture cement. In 2004, as the existing East Pit neared its exhaustion of cement grade limestone, the West Pit expansion was approved by the County of San Bernardino on 191 acres to the west of the existing East Pit with approximately 217 million tons of limestone reserves. The amount of high grade limestone to blend with the lower grades of limestone to meet the feed requirement for the cement plant would not be adequate for the life of the mine. The proposed South Quarry site would be able to meet the requirements for blending with its estimated, proven and inferred reserves of over 200 million tons of high to medium grade limestone rock.

1.4 Agency Coordination

1.4.1 Lead Agency

The County of San Bernardino in cooperation with the USFS will act as the Lead Agency for compliance with CEQA and will prepare a joint EIR/EIS. Likewise, the USFS will act as the Lead Agency for compliance with NEPA.

1.4.2 Cooperating Agency

The Mojave Desert Air Quality Management District has agreed to participate as a cooperating agency and to provide expertise regarding the proposed actions’ relationship to the relevant objectives of regional, State and local land use plans, policies and controls.
2.0 SCOPING PROCESS SUMMARY

2.1 Notice of Intent

The USFS published a Notice of Intent (NOI) to prepare a joint EIR/EIS on February 22, 2012 in the Federal Register Volume 77, Number 35 (Attachment 1). The NOI was also published as a legal notice in the San Bernardino Sun on March 5th, 2012 (Attachment 1). Publication of the NOI in the Federal Register began a 44-day comment period that ended April 6, 2012.

2.2 Notice of Preparation

The County of San Bernardino Land Use Services Department, published a Notice of Preparation (NOP) to prepare a joint EIR/EIS on March 5th, 2012 in the daily publications of the San Bernardino Sun and the Victorville Daily Press (Attachment 1). The NOP was also published on March 7th, 2012 in the weekly publications of the Big Bear Grizzly and the Lucerne Valley Leader (Attachment 1). The NOP was also sent to the State Clearinghouse and a mailing list of 97 addresses of agencies, organizations, and interested parties.

2.3 Public Scoping Meetings

Two public Scoping Meetings were held to inform the public about the proposed project. Both meetings were held in an open house format with stations for various aspects of the proposed project: plan of operations, CEQA/NEPA processes, biological resources (including bighorn sheep and plants), visual resources, and documents. Attendees had a chance to talk to specialists, ask questions, review documents, and leave comments.

The first public Scoping Meeting was held on Tuesday, March 13, 2012 at the Lucerne Valley Community Center located at 33187 Old Woman Springs Rd in Lucerne Valley, Ca. A total of 7 attendees were documented by signing in on a voluntary sign-in sheet at the Lucerne Valley Scoping Meeting.

A second public Scoping Meeting was held on Tuesday March 20, 2012 at the Big Bear Discovery Center located at 40971 North Shore Drive (Highway 38), Fawnskin, Ca. A total of 18 attendees were documented by signing in on a voluntary sign-in sheet at the Big Bear Scoping Meeting.

2.4 Written Comments

Eleven comment letters were received within the comment period ending on April 6, 2012. Three comment letters were received after April 6, 2012. Issues identified in these letters are summarized in Section 3 below. Copies of comment letters are provided in Attachment 2.
<table>
<thead>
<tr>
<th>Letter Number</th>
<th>Sender</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>San Bernardino County Department of Public Works</td>
<td>3/6/2012</td>
</tr>
<tr>
<td>2</td>
<td>Mojave Desert Air Quality Management District</td>
<td>3/7/2012</td>
</tr>
<tr>
<td>3</td>
<td>Roger Peterson</td>
<td>3/13/2012</td>
</tr>
<tr>
<td>4</td>
<td>Ron, JoAnne, Lauren, and John Thompson</td>
<td>3/20/2012</td>
</tr>
<tr>
<td>5</td>
<td>Center for Biological Diversity</td>
<td>3/23/2012</td>
</tr>
<tr>
<td>6</td>
<td>California Department of Fish and Game- Jeff Brandt</td>
<td>3/29/2012</td>
</tr>
<tr>
<td>7</td>
<td>Danny Bogner</td>
<td>4/1/2012</td>
</tr>
<tr>
<td>8</td>
<td>California Department of Fish and Game- Jeff Villepique</td>
<td>4/6/2012</td>
</tr>
<tr>
<td>9</td>
<td>California Native Plant Society</td>
<td>4/6/2012</td>
</tr>
<tr>
<td>10</td>
<td>Linda Quiroz</td>
<td>4/6/2012</td>
</tr>
<tr>
<td>11</td>
<td>Lucerne Valley Economic Development Association (LVEDA)</td>
<td>4/6/2012</td>
</tr>
<tr>
<td>12</td>
<td>South Coast Air Quality Management District</td>
<td>4/10/2012</td>
</tr>
<tr>
<td>13</td>
<td>Friends of Fawnskin</td>
<td>4/15/2012</td>
</tr>
<tr>
<td>14</td>
<td>United States Environmental Protection Agency Region IX</td>
<td>5/14/2012</td>
</tr>
</tbody>
</table>
3.0 COMMENT SUMMARY AND ANALYSIS

Issues were identified by reviewing the comment documents received. Many of the comments identified similar issues. The following section provides a summary of the issues, concerns, and/or questions raised during the scoping period. For this report, the issues have been grouped into one of the three following categories:

- Issues or concerns regarding the project description, effects analysis and/or potential mitigation measures;
- Issues or concerns that could develop an alternative and/or a better description or qualification of the alternatives;
- Issues or concerns outside the scope of the EIR/EIS.

The comments discussed below are paraphrased from the original comment letters. To a minor degree, some level of interpretation was needed to identify the specific concerns to be addressed. Many of the comments identified similar issues; to avoid duplication and redundancy similar comments were grouped together and then summarized. Original comment letters are included in Attachment 2.

The number next to each comment below indicates in which letter the statement was included. For example, “Impacts to Biological Resources (3,6,10)” would indicated that the comment could be found in Letters 3, 6, and 10. Comment letter numbers and senders can be referenced in Table 1.

3.1 Issues or Concerns Regarding the Project Description, Effects Analysis, and/or Mitigation Measures

Issues and concerns have been grouped in this section by issue area. These comments will be taken into consideration when preparing the project description, effects analysis, and mitigation in the EIR/EIS.

Project Description/Purpose and Need-
- Provide a complete Project description that lists all the activities covered by this Project, including on- and off-site development (6)
- Ensure agency regulation and monitoring of MCC to ensure reclamation efforts throughout the life of the mine, even if ownership is transferred (7, 10)
- Consider alternative reclamation methods (10)
- Require a longer reclamation period as 5 years seems extremely short (13)
- Consider using a congressional withdrawal instead of an administrative withdrawal to avoid renewal every 20 years (13)
• Include a clear description of the proposed project’s purpose and need; describe the underlying need(s) for the project and associated objectives and outcomes. Describe in detail the proposed facility design and operation as well as maintenance and monitoring activities (14).

• Include the following in the reclamation plan: (14)
 - Detailed account of measures taken to decommission mine operations and stabilize and revegetate slopes and other work areas;
 - Identification of the areas targeted for reclamation, and description of the intended degree of treatment in each area;
 - Estimation of any irrigation requirements;
 - Timing of reclamation relative to mining operation and duration of reclamation treatment;
 - Standards for determining and means of assuring successful reclamation; and
 - Means of assuring that all maintenance required for reclaimed areas would continue after operations cease or while operations are suspended.

• Describe the availability, properties, and sources of growth media, discuss how growth media will be applied to disturbed areas, and identify any additional measures that may be needed to ensure successful reclamation and revegetation of the site (14).

• Recommend that revegetation be accomplished with only native species indigenous to the area (14).

• Monitor revegetation for at least five years following revegetation efforts (14).

• Recommend post-operation surveillance to make sure reclamation efforts are successful, if efforts are not successful identify additional actions to be taken (14).

• Identify the bond amounts for closure and reclamation of the proposed project facility, also include how the Forest Service can modify if need be (14).

• Discuss mitigation measures to minimize air pollutant emissions from the quarry. EPA recommends mitigation measures (see letter 14 for mitigation measures) (14).

• Identify any sustainable design and/or operation measures to reduce greenhouse gases in the EIS with an estimate of the greenhouse gas emissions reductions that would result if measures were implemented. (See letter 14 for specific examples) (14).

General Environmental Analysis

• Thoroughly identify and describe appropriate mitigation measures associated with the project, specifying which ones are committed to by the mine operator and required by the Forest Service (14).

• Address how each mitigation measure would specifically mitigate the targeted impact, provide substantial detail on the means of implementing each mitigation measure, identify who would be responsible for implementing it, indicate whether it is enforceable, and describe its anticipated effectiveness (14).

• Conduct implementation and effectiveness monitoring and consider contingency measures in case initial mitigation measures fail (14).
• Actively pursue pollution prevention techniques to prevent or reduce pollution at the proposed mine (14)

Air Resources-

• Analyze impacts of construction traffic on air quality (5)
• Discuss greenhouse gas emissions/climate change impacts on plants, wildlife, and habitat (5)
• Quantify, minimize, and off-set greenhouse gas emissions (5, 14)
• Provide an analysis of cumulative impacts of toxic emissions from current cement plant and proposed expansion such as mercury, hydrogen chloride, and other organic hazardous air pollutants (5)
• Analyze impacts during both construction and operation (12, 14)
• Quantify PM$_{2.5}$ emissions (12)
• Calculate localized air quality impacts in addition to regional impacts, incorporating dispersion modeling if necessary (12, 14)
• Perform a mobile source health risk assessment if diesel-fueled vehicles are used (12)
• Refer to South Coast Air Quality Management District’s CEQA Air Quality Handbook for sample air quality mitigation measures (12)
• Analyze impacts on fugitive dust and mitigation measures necessary to control construction related emissions (10, 12)
• Discuss the National Ambient Air Quality Standards (NAAQS) applicable to air quality in the project area (14)
• Estimate project emissions from all facilities, road, construction, and blasting related to the quarry’s operations (14)
• Demonstrate that the direct and indirect emissions from all phases of the project conform to the approved State Implementation Plan (SIP) and do not cause or contribute to violations or the NAAQS (14)
• Work with the MDAQMD in developing a Draft General Conformity Determination for the project (14)
• Identify all air permits and/or permit modifications that would be needed for the proposed project (14)
• Identify all Class I Prevention of Significant Deterioration areas located within 100 kilometers of the proposed project site (14)
• Discuss mitigation measures to minimize air pollutant emissions from the quarry. EPA recommends mitigation measures (see letter 14 for mitigation measures) (14)
• Discuss whether and how air quality monitoring would be implemented to ensure project compliance with air quality standards and permits (14)
• Estimate emissions and impacts of hazardous air pollutants (HAPs) from the proposed project (should include off-site facilities) (14)
• Discuss potential impacts on climate change, and mitigation measures needed to protect the project from the effects of climate change (14)
• Identify any sustainable design and/or operation measures to reduce greenhouse gases in the EIS with an estimate of the greenhouse gas emissions reductions that would result if measures were implemented. (See letter 14 for specific examples) (14)

Water Resources

• Address impacts to jurisdictional Waters of the U.S. and the Waters of the State of California. Determine if the proposed project requires a Clean Water Act Section 404 permit (5, 14). If a permit is required, the EPA will review the project for compliance with the Federal Guidelines for Specification of Disposal Sites for Dredged or Fill Materials (40 CFR 230) (14)

• Avoid, minimize, or mitigate any impacts to jurisdictional Waters of the U.S. or the Waters of the State of California (5)

• Identify required mitigation for impacts to waters of the U.S., if discharge is permitted. Discussion should include:
 - Acreage and habitat type of waters of the U.S. that would be created or restored;
 - Water sources to maintain the mitigation area;
 - The revegetation plans including the numbers and age of each species planted;
 - Maintenance and monitoring plans, including performance standards;
 - The size and location of mitigation zones;
 - The parties that would be ultimately responsible for the plan’s success; and
 - Contingency plans that would be implemented if the original plan fails.

• Include a jurisdictional delineation of State waters, if warranted (6)

• Retain all wetlands and watercourses, whether intermittent or perennial, and provide a substantial setback to preserve the riparian and aquatic values and maintain their value to on-site and off-site wildlife populations (6)

• Discuss a plan for MCC to monitor the lower aquifers to make sure there are no significant changes in the water quality and quantity after blasting (7)

• Prevent debris (from blasting) from sliding down hill into the Cushenbury Creek (7)

• Discuss impacts to local springs and creeks (10)

• Describe all existing water resources in the project vicinity and cumulative impact area (14)

• Describe baseline groundwater and surface water quality and quantity in the project area, specifying any changes that could be attributed to past exploration or mining activities (14)

• Discuss groundwater adjudication in the project facility (14)

• Completely describe the pre-mining, current, and projected drainage patterns, including post-closure drainage patterns. Include hydrologic and topographic maps of the project area (14)

• Address potential effects of the project on erosion potential and sedimentation (14)

• Identify any components of the proposed project that would fall within 25- and 100-year flood plans (14)
• Discuss potential for flash floods to transport sediment or contaminants from disturbed areas at the mine to any surface waters (14)
• Describe how project and alternatives will comply with the EPA-approved water quality standards (14)
• Describe and discuss the permits that would be required by state and federal agencies for water resources related to the project (14)
• Discuss the applicability of California’s Industrial Activities Stormwater General Permit to the project (14)
• Include a storm water pollution prevention plan and discuss mitigation measures that may be necessary (14)
• Decide whether a Nation Pollution Discharge Elimination System (NPDES) permit would be required for any phase of the project. If it is required, describe how the project would meet permitting requirements (14)
• Describe all surface water discharges from the site, including storm water and mine drainage (14)
• Discuss all direct, indirect, and cumulative impacts to surface water and groundwater quality, quantity, flow, water supply wells, wetlands, springs and seeps, vegetation, wildlife and other water-dependent resources from proposed project and alternatives during operations and after closure (14)
• Identify all sources of water needed for the project, and describe the potential environmental impacts associated with using these sources (14)
• Describe dewatering systems and estimate rates of dewatering and water use by the proposed project (14)
• Describe procedures for water quality and quantity monitoring and reporting (monitoring locations, frequencies, etc) (14)

General Biological Resources
• Analyze impacts to all known species, not just special status, to assure ecosystem level protection. (5,6,8,13) This includes but is not limited to:
 - alkali mariposa-lily (Calochortus striatus)
 - Andrew’s marble butterfly (Euchloe hyantis andrewsi),
 - badger (Taxidea taxus)
 - bald eagle (Hyliaeetus leucocephalus),
 - bighorn Sheep (Ovis canadensis)
 - California mountain kingsnake (Lampropeltis zonata [parvirubra]),
 - coast horned lizard (Phrynosoma blainvillii), and
 - Cooper's hawk (Accipiter cooperii)
 - desert Bird's Beak (Cordylanthus eremicus)
 - desert kit fox (Vulpes velox)
 - desert monkey grasshopper (Psychomastax deserticola)
 - desert tortoise (Gopherus agassizii)
- fringed myotis (*Myotis thysanodes*),
- golden eagle (*Aquila chrysaetos*)
- hillside wheat grass (*Leymus salinus ssp. mojavensis*)
- Latimer's woodland-gilia (*Saltugilia latimeri*)
- Le Conte's thrasher (*Toxostoma lecontei*)
- little Mousetail (*Myosurus minimus ssp. apus*)
- long-eared myotis (*Myotis evotis*)
- long-legged myotis (*Myotis volans*)
- Mohave ground squirrel (*Xerospermophilus mohavensis*)
- pallid San Diego pocket mouse (*Chaetodipus fallax pallidus*)
- Palmer's mariposa-lily (*Calochortus palmeri var. palmeri*)
- Parish's alkali grass (*Puccinellia parishii*)
- Parish's brittlescale (*Atriplex parishii*)
- Parish's daisy (*Erigeron parishii*)
- Parish's phacelia (*Phacelia parishii*)
- Parish's popcorn-flower (*Plagiobothrys parishii*)
- pinyon rock-cress (*Boechera dispar*)
- prairie falcon (*Falco mexicanus*)
- purple-nerve cymopterus (*Cymopterus multinervatus*)
- salt Spring checkerbloom (*Sidalcea neomexicana*)
- San Bernardino milk-vetch (*Astragalus bernardinus*)
- San Bernardino ragwort (*Packera bernardina*)
- Shockley's rock-cress (*Boechera shockleyi*)
- silver-haired bat (*Lasionycteris noctivagans*)
- southern rubber boa (*Charina umbratica*)
- summer tanager (*Piranga rubra*)
- Townsend’s big-eared bat (*Corynorhinus townsendii*)
- vanishing wild buckwheat (*Eriogonum evanidum*)
- western burrowing owl (*Athene cunicularia*)
- western mastiff bat (*Eumops perotis californicus*)
- white pygmy-poppy (*Canbya candida*)
- Yuma myotis (*Myotis yumanensis*)
- mule deer (*Odocoileus hemionus*)

- Discuss direct, indirect, and cumulative impacts (on biological resources (5)
- Discuss impact of dust from mining on biological resources (5,6)
- Maximize options to protect habitat and minimize habitat loss and fragmentation (5)
- Acquisition of lands for conservation should be part of mitigation strategy. A conservation easement should be placed over any mitigation open space, a management plan and funding should be addressed (5,6)
- Provide mitigation for federal and state listed species, sensitive plant species, and species
of special concern (5, 6, 14)

- Include an evaluation of the California Wildlife Habitat Relationship system’s (CWHR) habitat classification scheme in surveys (5)
- Perform seasonal surveys for all biological resources that have potential to occur on site (5)
- Avoid, minimize, and mitigate impacts to biological resources in that order (5)
- Conduct all biological surveys within 1 year of distribution of the EIR/EIS (6)
- Discuss of prior approvals and mitigation measures for the mine site (6)
- Do not defer impact analysis and mitigation measures to future regulatory discretionary actions, such as A Lake or Streambed Alteration Agreement, CESA Permit, or Federal Endangered Species Act (ESA) permit (6)
- Provide complete assessment of the flora and fauna within and adjacent to the Project area (6)
- Analyze the effect on the adjacent Western Riverside Multiple Species Habitat Conservation Plan (6)
- Obtain a CESA permit if the Project has potential to result in “take” of species of plants or animals listed under CESA (6)
- Provide with plan to preserve migratory wildlife corridors (6)
- Provide a biological plan/mitigation to sustain life for the animals that will be moved off-site (food, water, etc) (7, 10)
- Evaluate crypto-biotic soils potentially found on-site (5)
- Discuss nearby natural conservation areas, wilderness areas or other specially designated areas and how they could be affected (14)
- Recommend that the Forest Service work closely with the U.S. Fish and Wildlife Service (USFWS) and the California Department of Fish and Game (CDFG) to determine potential impacts to plant and wildlife species, especially species classified rare, threatened, or endangered on either state or federal lists (14)
- Identify impacts (direct, indirect, cumulative) to all petitioned and listed threatened and endangered species and critical habitat, as well as sensitive species, from the proposed project and alternatives (14)
- Discuss how surveys were conducted, the findings of the surveys, and all follow-up surveys and monitoring that would occur (14)
- Include the biological assessment by reference or as an appendix (14)
- Discuss how and when the Forest Service intends to meet its obligations under Section 7 of the Endangered Species Act (14)
- Summarize or include as an appendix the biological opinion, if one is prepared by the USFWS (14)
- Discuss the mitigation measures that would be taken to prevent exposure of migratory waterfowl and other wildlife to any toxic solutions or spills and discuss the effectiveness of these measures (14)
- Identify non-jurisdictional wetland and riparian habitat as well as other unique or
important habitat areas (such as carbonate habitat) affected by the proposed project. Describe the values and acreages of the habitat and what can be done to improve the habitat through project design and through mitigation measures (see letter 14 for specific mitigation examples) (14)

Vegetation Resources (Vegetative communities, priority and special status species)

- Address the goals and objectives of the Carbonate Habitat Management Strategy in order to ensure the recovery of these taxa (5, 6, 10):
 - Cushenbury buckwheat (*Erigonum ovalifolium* var. *vineum*)
 - Cushenbury milk-vetch (*Astragalus albens*)
 - Cushenbury oxytheca (*Acanthoscyphus* (was *Oxytheca*) *parishii* var. *goodmaniana*)
 - Parish’s daisy (*Erigeron parishii*)

- Discuss impacts to the following (but not limited to) species (9):
 - southern mountain buckwheat (*Eriogonum kennedyi* var. *austromontanum*)
 - Big Bear valley sandwort (*Eremogone ursine*)
 - San Bernardino Mountains dudleya (*Dudleya abramsii* spp. *affinis*)
 - Parish’s rock cress (*Boechera parishii*)

- Perform seasonal surveys for sensitive plant species according to CDFG’s November 2009 guidance for *Protocols for surveying and Evaluating Impacts to Special Status Native Plant Populations and Natural Communities* (5, 6, 9)

- Document seasonal surveys as recommended by California Native Plant Society and California Botanical Society policy guidelines (5)

- Provide vegetation maps at scale that is useful for evaluating impacts (5)

- Complete late season surveys (Aug- Oct) (5)

- Avoidance of rare plants is preferable (5)

- Provide a plan to restore plants to their natural state (7)

- Discuss impacts due to non-native and/or invasive species (13)

Wildlife Resources (Priority species, special status species)

- Discuss impacts of noise on wildlife (7, 10)

- Perform seasonal surveys for sensitive animal species within one year of the distribution of the EIR/EIS. (5)

- Evaluate project site to determine if desert tortoises (*Gopherus agassizii*) or suitable habitat are present (5)

- Provide a detailed mitigation plan if desert tortoise or suitable habitat is present (5)

- A desert tortoise mitigation plan should avoid translocation of tortoises if possible due to lack of scientific proof that species adapt and thrive (5)

- Provide 5:1 mitigation for all acres of desert tortoise habitat destroyed (5)

- Develop an aggressive raven prevention plan if desert tortoises are present (5)

- Evaluate impacts to golden eagles (*Aquila chrysaetos*) found on-site or adjacent to site (5)

- Identify potential impacts to the American badger (*Taxidea taxus*) and desert kit fox
(Vulpes macrotis) and make sure there will be no “take”(5)

- Discuss actions to prevent and mitigate the loss of approximately 150 acres of native habitat where species forage, move between habitats, find shelter, and escape predators (6, 8,10)
- Discuss impacts to the Nelson’s bighorn sheep and disturbance or loss of its habitat (8)
- Address movement of the bighorn sheep across the haul road, maintenance of connectivity across the road, disease threats from domestic sheep, and predation from domestic dogs (8)
- Discuss impacts of the quarry itself on the movement of the bighorn sheep (i.e. immigration and emigration) (8)

Cultural Resources

- Evaluate old mines as historic sites (7)
- Discuss impacts to SBNF historic areas and access to these areas (i.e. Mohawk Mine) (7)
- Discuss the Forest Service’s consultation with the all Native American tribal governments that could potentially be affected by the proposed project (14)

Geology and Soils Resources

- Evaluate cryptobiotic soils potentially found on-site (5)
- Discuss measures for stabilization of slopes during blasting (7)
- Discuss measures to avoid disturbing the known fault lines (7)
- Discuss preservation of the natural slopes to avoid extreme cases of erosion (10)
- Discuss reclamation of the land back to natural slope instead of steep benches (to avoid erosion) (10)

Mineral Resources

- Discuss mineral resources found in the area and significance (7)

Scenery Resources

- Discuss impacts on scenic integrity of the Project site (5, 10)
- Provide visual simulations of the project site cut lines (7)
- Provide visual simulations from the east (7)

Public Health and Safety

- Discuss impacts of increased traffic on traffic accidents (10)
Hazards and Hazardous Materials

- Analysis of cumulative impacts of toxic emissions from current cement plant and proposed expansion such as mercury, hydrogen chloride, and other organic hazardous air pollutants (4)
- Need a plan to avoid hazardous materials and minerals from being released while blasting takes place (7)
- Actively pursue pollution prevention techniques to prevent or reduce pollution at the proposed mine (14)
- Discuss how accidental releases of hazardous material would be handled, and describe the quarry’s petroleum-contaminated soil management plan (14)

Noise/Vibration

- Discuss impacts of noise on the local community and wildlife (7,10)

Recreation

- Impacts to SBNF recreation areas and access to these areas (Burnt Flats) for hiking, fishing, hunting, etc (3)
- Impacts of limited access for recreational hunters to the project area and adjacent Burnt Flats areas (7,8)
- Discuss any special land uses which comprise on-going activities (such as livestock grazing) and how they could be affected (14)

Environmental Justice

- Identify minority and low-income populations and address whether the project or alternatives would cause any disproportionate adverse impact (14)
- If there are any adverse environmental justice effects, explore different mitigation measures (14)
- Describe measures taken by the Forest Service to (1) fully analyze the environmental effects of the proposed Federal action on minority communities and low-income populations; and (2) present opportunities for affected communities to provide input into the NEPA process (14)
- State whether the analysis meets the requirements of the agency’s environmental justice strategy (14)

Cumulative Impacts

- Impacts of the Proposed Project and surrounding projects, including but not limited to the Omya Butterfield-3 Mine expansion, should be analyzed (5,13)
- Discuss all potential cumulative impacts associated with the proposed project and alternatives (14)
- Discuss methodology used to assess cumulative impacts (14)
- Use guidance from the Council on Environmental Quality, and the EPA to evaluate cumulative impacts (see letter 14 for details) (14)
3.2 Alternative Development and/or Alternative Design Criteria ______

- Include a range of alternatives analysis that focuses on environmental resources and ways to avoid or minimize impacts to those resources (3,6)
- Alternatives should include: a no-action alternative, an environmentally preferred alternative, and alternative mining scenarios including phasing based on successfully meeting restoration criteria (5)
- Address all possible alternative methods for managing the reclamation to result in a more natural setting with long-term habitat sustainability as a primary goal (10,13)
- Rigorously explore and objectively evaluate all reasonable alternatives, including reasonable alternatives not within the jurisdiction of your agency (14)
- Provide a clear discussion of the reasons for the elimination of alternatives that were not evaluated in detail (14)
- Identify and discuss the potential environmental impacts of the alternatives in comparative form (14)
- Reasonable alternatives could include but are not limited to: alternative quarry sites, alternative designs for quarry facilities (e.g., waste rock piles, road, conveyors, stockpiles, etc), alternative closure designs, smaller project, and different timelines (14)
- Any methodologies used should be identified, and the scientific and other sources relied upon for conclusions in the statement should be explicitly referenced (14)

3.3 Issues or Concerns Outside the Scope of the EIR/EIS ___________

- Harvest Pinyon trees in project area for nuts and fire wood. These trees will be removed during the project. It is suggested that they be harvested by local people or companies before they are removed, which would also provide a profit for the SBNF (7)
- Quarries no longer in use by MCC should be completely reclaimed before other mining is allowed to commence (10)
- Citizens advisory board be assembled with representatives from the SBNF, USFS, Big Bear Forest Rangers, CDFG officials, environmental experts, MCC, and concerned citizens (10)
ATTACHMENT 1
Scoping Notices
THIS PAGE INTENTIONALLY LEFT BLANK
This section of the FEDERAL REGISTER contains documents other than rules or proposed rules that are applicable to the public. Notices of hearings and investigations, committee meetings, agency decisions and rulings, delegations of authority, filing of petitions and applications and agency statements of organization and functions are examples of documents appearing in this section.

DEPARTMENT OF AGRICULTURE

Animal and Plant Health Inspection Service

[Docket No. APHIS–2010–0103]

AGENCY: Animal and Plant Health Inspection Service, USDA.

ACTION: Notice; extension of comment period.

SUMMARY: We are extending the comment period for a petition received from Dow AgroScience LLC seeking a determination of nonregulated status of corn designated as DAS–40278–9, which has been genetically engineered for increased resistance to broadleaf herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and resistance to grass herbicides in the aryloxypenoxypriponate ester coenzyme A carboxylase inhibitor group (such as quinclorac herbicides). This action will allow interested persons additional time to prepare and submit comments on the petition, our plant pest risk assessment, and our draft environmental assessment for the proposed determination of nonregulated status.

DATES: We will consider all comments that we receive on or before April 27, 2012.

ADDRESSES: You may submit comments by either of the following methods:

- Federal eRulemaking Portal: Go to http://www.regulations.gov/
 #documentDetail;D=APHIS-2010-0103-0001.
- Postal Mail/Commercial Delivery: Send your comment to Docket No. APHIS–2010–0103, Regulatory Analysis and Development, PPD, APHIS, Station 3A–03.8, 4700 River Road Unit 118, Riverdale, MD 20737–1238.
- Supporting documents and any comments we receive on this docket may be viewed at http://www.regulations.gov/
 #docketsDetail;D=APHIS-2010-0103 or in our reading room, which is located in room 1141 of the USDA South Building, 14th Street and Independence Avenue SW., Washington, DC. Normal reading room hours are 8 a.m. to 4:30 p.m., Monday through Friday, except holidays. To be sure someone is there to help you, please call (202) 690–2817 before coming.

FOR FURTHER INFORMATION CONTACT: Mr. Evan Chestnut, Policy Analyst, Biotechnology Regulatory Services, APHIS, 4700 River Road Unit 147, Riverdale, MD 20737–1236; (301) 851–3910, email: evan.a.chestnut@aphis.usda.gov. To obtain copies of the petition, draft environmental assessment, or plant pest risk assessment, contact Ms. Cindy Eck at (301) 851–3892, email: cynthia.a.eck@aphis.usda.gov.

SUPPLEMENTARY INFORMATION: On December 27, 2011, we published in the Federal Register (76 FR 80872–80873, Docket No. APHIS–2010–0103) a notice advising the public that the Animal and Plant Health Inspection Service (APHIS) has received a petition from Dow AgroScience LLC seeking a determination of nonregulated status of corn (Zea mays) designated as event DAS–40278–9, which has been genetically engineered for increased resistance to broadleaf herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and resistance to grass herbicides in the aryloxypenoxypriponate ester coenzyme A carboxylase inhibitor group (such as quinclorac herbicides). Comments on the Dow petition, our plant pest risk assessment, and our draft environmental assessment for the proposed determination of nonregulated status were required to be received on or before February 27, 2012. We are extending the comment period on Docket No. APHIS–2010–0103 for an additional 60 days, ending April 27, 2012. This action will allow interested persons additional time to prepare and submit comments on the Dow petition, our plant pest risk assessment, and our draft environmental assessment for the proposed determination of nonregulated status.

Done in Washington, DC, this 15th day of February 2012.

Kevin Shea,
Acting Administrator, Animal and Plant Health Inspection Service.

[FR Doc. 2012–04681 Filed 2–21–12; 8:45 am]

DEPARTMENT OF AGRICULTURE

Forest Service

San Bernardino National Forest, Mountaintop Ranger District, California, Mitsubishi South Quarry Expansion Project

AGENCY: Forest Service, USDA.

ACTION: Notice of intent to prepare an environmental impact statement.

SUMMARY: Mitsubishi Cement Corporation is submitting to the San Bernardino National Forest and San Bernardino County, for permitting, a Plan of Operations and Redemption Plan for the South Quarry. The South Quarry will total approximately 153.6 acres consisting of a 128-acre quarry, a 2.7 acre landscape berm, a 22.2-acre haul road 1.6 miles in length, and a temporary construction road of 0.7 acres. The South Quarry and haul road will be located almost entirely (147.0 acres) on >40 acres of unpatented claims owned by Mitsubishi Cement Corporation on the San Bernardino National Forest with approximately 6.6 acres of the haul road located on Mitsubishi Cement Corporation fee land where it enters the existing East Pit.
Current estimates project the South Quarry could feed the cement plant for approximately 120 years. No change to the throughput or operation of the Cushenbury Cement Plant is proposed as part of this project. Based on drilling conducted during the winter of 2009 and 2010, the South Quarry site has estimated proven and inferred reserves of over 200 million tons of mostly high to medium grade limestone. This higher grade limestone would be blended with lower grade limestone excavated from the West and East Pits at a ratio of approximately 50/50 in order to meet the limestone specifications to feed the adjacent Mitsubishi Cement Corporation Cushenbury Cement Plant. Concurrent reclamation would be conducted throughout the life of the quarry and, at the conclusion of excavations, 5 years of active reclamation and revegetation would be implemented followed by revegetation monitoring and remediation until revegetation goals are achieved.

Comments are being requested to help identify significant issues or concerns related to the proposed action, to determine the scope of the issues (including alternatives) that need to be analyzed and to eliminate from detailed study those issues that are not significant. Supporting documentation should be included with comments recommending that the joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR) (EIS/EIR), to be prepared by the San Bernardino National Forest and County of San Bernardino, as the lead state agency under the California Environmental Quality Act (CEQA), address specific environmental issues.

DATES: Comments concerning the scope of the analysis must be received by March 23, 2012. The draft EIS/EIR is expected fall 2012 and the final EIS/EIR is expected spring 2013.

ADDRESSES: Send written comments to San Bernardino National Forest, Mitsubishi South Quarry Expansion Project, do Anne Surdela, EORP Consulting, Inc. 215 N. 5th Street, Redlands, CA 92374. Comments may also be sent via email to asurdela@eorpconsulting.com (please put “Mitsubishi Cement Company South Quarry Expansion” in the subject line), or via facsimile to (909) 307-0650. It is important that reviewers provide their comments at such times and in such a way that they are useful to the Agency’s preparation of the EIS/EIR. Therefore, comments should be provided prior to the close of the comment period and should clearly articulate the reviewer’s concerns and contentions with the proposed action. Comments received in response to this solicitation, including names and addresses of those who comment, will be part of the public record for this proposed action. However, comments submitted anonymously will be accepted and considered.

FOR FURTHER INFORMATION CONTACT: Thomas Hall, Environmental Coordinator, San Bernardino National Forest at (909) 382-2905 or thall@fs.fed.us. Individuals who use telecommunication devices for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1-800-877-8339 between 8 a.m. and 8 p.m., Eastern Time, Monday through Friday.

SUPPLEMENTARY INFORMATION: Mitsubishi Cement Corporation submitted the Plan of Operations and Reclamation Plan for the proposed South Quarry to the Mountaintop District Ranger, San Bernardino National Forest, on October 22, 2010. The South Quarry is within portions of Sections 14, 15, 22, and 23 Township 3 North, Range 1 East. Elevations at the South Quarry site currently range from 5,555 to 6,675 feet.

The South Quarry would be mined at an average production rate of 1.3 million tons per year of ore and 150,000 tons per year of waste rock for up to 120 years. At this time, Mitsubishi Cement Corporation is requesting a 120-year operations plan excavating approximately 150 million tons of ore. Mitsubishi Cement Corporation's Cushenbury Cement Plant requires a limestone feed of up approximately 2.6 million tons per year, and this would not change as a result of the South Quarry Project. East and West Pits would be continued to an average of 1.3 million tons per year of ore and 150,000 tons per year of waste rock. Therefore, the overall limestone production of 2.6 million tons per year and 300,000 tons per year of waste rock at the mining complex would not change.

Purpose and Need for Action

Mitsubishi Cement Corporation submitted to San Bernardino National Forest and San Bernardino County a Plan of Operations and Reclamation Plan for the proposed South Quarry. The Forest Service is analyzing the surface use of National Forest System lands in connection with operations authorized by the United States mining laws (50 U.S.C. 21–54), which confer a statutory interest upon the public lands to search for minerals, shall be conducted so as to minimize adverse environmental impacts on National Forest System surface resources. The responsibility for managing mineral resources is in the Secretary of the Interior.

Mitsubishi Cement Corporation’s Cushenbury Cement Plant requires a limestone feed of approximately 2.6 million tons per year of a specific blend of limestone in order to manufacture cement. In 2004, as the existing East Pit neared its exhaustion of cement grade limestone, the West Pit expansion was approved by the County of San Bernardino on 191 acres to the west of the existing East Pit with approximately 217 million tons of limestone reserves. The amount of high grade limestone to blend with the lower grades of limestone to meet the feed requirement for the cement plant would not be adequate for the life of the mine. The proposed South Quarry Site would be able to meet the requirements for blending with its estimated, proven and inferred reserves of over 200 million tons of high to medium grade limestone rock.

Proposed Action

The development of the South Quarry would consist of construction of the 1.8 mile long haul road, four phases of excavations, concurrent reclamation, and then final reclamation followed by revegetation monitoring. During the first two years, the 1.8-mile long haul road would be constructed. The planned haul road would access the South Quarry at 5,950 feet above and traverse down the north slope to an elevation of 5,050 feet in the southwest corner of the existing East Pit. The road’s surface width would be 50 to 60 feet with a grade not to exceed 10% and it would have a surf ace of crushed limestone. The excavation plan for the South Quarry is divided into four phases based on operational, engineering, and environmental concerns with the development of the main quarry to a maximum depth of 5365 feet above mean sea level or 1,215 feet below the quarry rim on the south. Phase 1A would be initiated after construction of the haul road and compliance with reclamation conditions and the ore reserves of approximately 3.5 years. Phase 1B would excavate the southeast 31 acres of the quarry. Reserves are estimated at about 29 million tons of ore. At an ore production rate of 1.3 million tons per year, Phase 1B would have a life of approximately 22 years. Phase 2 would excavate the central 85 acres of the quarry. Reserves are estimated at 1.9 million tons of ore. At an ore production rate of 1.3 million tons per year, Phase 1B would have a life of approximately 14.5 years for a cumulative total of 40 years from the
commencement of mining, Phase 3 would be an approximately 40-year excavation on approximately 75 acres within the central part of the quarry within the footprint of Phase 2. Mining would excavate to floor elevation of approximately 5,905 feet, a depth of approximately 315 feet below the Phase 2 floor elevation of 6,120 feet. Reserves are estimated at over 52 million tons of ore. Phase 4 would be the final excavation phase on approximately 65 acres within the central part of the proposed South Quarry configuration, again within the footprint of Phase 2, to complete the 120-year lifespan. Mining would excavate to floor elevation of approximately 5,905 feet, a maximum depth of approximately 350 feet below the Phase 3 floor elevation of 5,905 feet. Reserves are estimated at 52 million tons of ore.

Minimal amounts of overburden are expected as the limestone is generally exposed across the quarry site. Any topsoil on-site would be in the form of smaller eroded limestone gravel that may contain organic material, and seeds. This surface material would be salvaged and stored in separately marked stockpiles for future reclamation efforts along and above the top benches and used for the construction of the landscape benches along the southern rim. Instead of removing the waste rock and depositing it in a separate waste stockpile(s) outside the rim of the quarry, this plan proposes to backfill the waste rock within Phases 1B and 4 as mining progresses with depth.

Mitsubishi Cement Corporation proposes to reclaim the quarry site to meet both Forest Service Minerals Regulations (36 CFR 228, Subpart A) under the jurisdiction of the San Bernardino National Forest and the California Surface Mining and Reclamation Act implemented by San Bernardino County that will minimize impacts to the surrounding environment. Due to planned extraction, the permanent perimeter quarry slopes would be reclaimed from the rim downward as completed per phase to meet designated slopes dependent on the findings of the ongoing slope stability assessments. Reclamation would consist of sloping excavated cuts and benches as necessary to meet the designed 0.55H:1V overall slope and to round the rims of the final benches. Each bench would be sloped inward toward the vertical wall to capture any precipitation or runoff. The individual benches would be approximately 45 feet vertical and 25 feet wide unless required to be flatter in specific areas, as determined by geological mapping during ongoing quarry operations or where the waste stockpile(s) would be located. Surface material salvaged for revegetation would be limited due to the surficial rock conditions on-site. Available material containing the native seed bank would be placed on the benches and would be augmented with additional growth media and mulch in "islands" to provide future sources of seeds. The revegetation methods include seeding with native perennial species, plantings grown in a nursery, whether started from seed, cuttings or whole plant salvaged from seeds collected at or near the site, and planting plants salvaged from new mining areas. The Biological Monitoring Plan would be an ongoing effort to assess the results of revegetation on the disturbed areas of the site. The monitoring plan would be followed annually to monitor and assess completed revegetated areas and areas where revegetation is being planned or just beginning. The Plan of Operations includes avoidance/minimization and environmental protection measures, including:

1. Mitsubishi Cement Corporation will, upon withdrawal, quit-claim specified unpatented mining claims held within San Bernardino National Forest, and convey specified patented lands, which have been verified by the Forest Service to contain occupied endangered species habitat on a 3 to 1 ratio (acres and conservation value) as mitigation for impacts of the expansion on Cushbury buckwheat (Eriogonum ovatifolium var. vineum), Cushbury oxytheca (Oxytheca parishii var. goodmanniana), and Parish's daisy (Erigeron parishii).

2. Control of surface drainage, erosion, and sedimentation of the proposed haul road and quarry operations will involve the following components currently being implemented for existing operations:
 a. Limiting surface disturbance to the minimum area required for active operations.
 b. Diverting runoff, where operationally feasible, such that runoff from un disturbed areas does not enter the area of active operations.
 c. Using ditches, sediment basins, and localized control and maintenance measures to intercept and control runoff along the haul road.
 d. Stabilizing disturbance areas through grading, revegetation, and other restoration practices.

3. To avoid incidental killing of birds protected under the Migratory Bird Treaty Act, two measures will be implemented: (1) Complete all vegetation removal or initial grading outside the breeding season (i.e., do not remove potential nesting habitat from February 1 through August 31), or (2) confirm prior to beginning vegetation removal but after survey flagging is in place showing the limits of grading, that no birds are nesting in areas to be disturbed.

4. The occurrence of weeds on-site shall be monitored by visual inspection. The goal is to prevent weeds from becoming established and depositing seeds in areas to be revegetated at a later date. No areas will be allowed to have more than 20 percent of the ground cover provided by nonnative plant species. If inspections reveal that weeds are becoming an issue or have established on-site, then removal will be initiated. Inspections shall be made in conjunction with revegetation monitoring.

Lead and Coordinating Agencies

The San Bernardino National Forest and County of San Bernardino, as the lead state agency under the California Environmental Quality Act (CEQA), will be preparing a joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR). This EIS/EIR will analyze and disclose the potential effects of the proposed limestone quarry. Each joint lead agency retains its decisionmaking authority over the part of the proposed action over which it has authority and does not acquire any influence over the other's decisionmaking.

The Mojave Desert Air Quality Management District has agreed to participate as a cooperating agency and to provide expertise regarding the proposed actions' relationship to the relevant objectives of regional, State and local land use plans, policies and controls.

Responsible Official

The Responsible Official for the Mitsubishi South Quarry Expansion project is the San Bernardino National Forest Supervisor, Jody Noiron.

Nature of Decision To Be Made

The Responsible Official will decide whether to approve the Plan of Operation following the environmental analysis. The Forest Service does not have the authority to remove the plaintiff's ability to mine its claims on National Forest System lands. San Bernardino County will decide whether to approve the Reclamation Plan under SMARA following the analysis under CEQA.
Scoping Process
This notice of intent initiates the scoping process, which guides the development of the RUS/BIR. The complete Plan of Operation and Reclamation Plan is available on the San Bernardino National Forest Web site at: http://data.ecosystem-management.org/napoweb/ nepa_project_exp.php?project=32613.
Public Scoping meetings will be held on Tuesday, March 13, 2012 at the Lucerne Valley Community Center, 33167 Old Woman Springs Road, Lucerne Valley, California 92356 beginning at 7 pm PST, and Tuesday, March 20, 2012 at the Big Bear Discovery Center, 40971 North Shore Drive (Highway 30), Fawnskin, California 92333 beginning at 7 pm PST.
It is important that reviewers provide their comments at such times and in such manner that they are useful to the agency’s scoping of the RUS/BIR. Therefore, comments should be provided prior to the close of the comment period and should clearly articulate the reviewer’s concerns and contentions.

Jody Noreen,
Forest Supervisor, San Bernardino National Forest.

BILLING CODE 4310–11–M

DEPARTMENT OF AGRICULTURE
Rural Utilities Service

Tri-State Generation and Transmission Association, Inc., Notice of Intent To Hold Public Scoping Meetings and Prepare an Environmental Assessment

AGENCY: Rural Utilities Service, USDA.
ACTION: Notice of Intent To Hold Public Scoping Meetings and Prepare an Environmental Assessment.

SUMMARY: The Rural Utilities Service (RUS), an agency of the United States Department of Agriculture, intends to hold public scoping meetings and prepare an Environmental Assessment (EA) to meet its responsibilities under the National Environmental Policy Act (NEPA) and RUS’s Environmental Policies and Procedures (7 CFR part 1794) in connection with potential impacts related to a proposed project in Colorado by Tri-State Generation and Transmission Association, Inc. (Tri-State). The proposed Burlington-Wray 230-kv (kV) Transmission Project (Proposal) consists of the following: a proposed new single-circuit 230-kv transmission line between the existing Burlington Substation in Kit Carson County and the existing Wray Substation in Yuma County. Tri-State is requesting that RUS provide financial assistance for the Proposal.

DATES: RUS will conduct public scoping meetings in an open house format to provide information and solicit comments for the preparation of the EA. The scoping meetings will be held on the following dates: Tuesday, March 6, 2012, from 5–8 p.m. at the Burlington Community Center, 340 South 14th Street, Burlington, Colorado 80807; Wednesday, March 7, 2012, 5–8 p.m. at the Wray Roundhouse, 245 West 4th Street, Wray, Colorado 80758. All written questions and comments must be received on or before March 23, 2012.

ADDRESS: An Alternative Evaluation Study (AES) and Macro Corridor Study (MCS) have been prepared for the proposed project. All documents are available for review prior to and at the public scoping meetings. The reports are available at the RUS address provided in this notice and on the agency’s Web site: http://www.rurdev.usda.gov/UWP/ea.htm. The documents are also available for review at the offices of Tri-State and its member cooperatives K.C. Electric Association and Y-W Electric Association. In addition, the following repositories will have the AES and MCS available for public review:

K.C. Electric Association, 281 Main Street, Stratton, Colorado 80836.

Wray Public Library, 301 W. 7th Street, Wray, Colorado 80758.
Burlington Public Library, 321 14th Street, Burlington, CO 80807.

FOR FURTHER INFORMATION CONTACT: To obtain copies of the EA, to comment on the EA, or for further information, contact Dennis Rankin, Environmental Protection Specialist, USDA Rural Utilities Service, 1400 Independence Avenue SW., Stop 1571, Washington, DC 20250–1571, Telephone: (202) 720–1953, Facsimile: (202) 890–0649, or email dennis.rankin@wdc.usda.gov.

SUPPLEMENTAL INFORMATION: The primary purpose for the Proposal is to alleviate transmission system limitations in eastern Colorado, improve Tri-State’s ability to dispatch existing generation resources in eastern Colorado, and improve Tri-State’s ability to deliver energy to native load customers. The proposed action also would provide a transmission outlet for renewable energy generation in eastern Colorado.

Tri-State is seeking funding from RUS for the Proposal. Prior to making a financial decision about whether to provide financial assistance for a proposed project, RUS is required to conduct an environmental review under the NEPA in accordance with the RUS Environmental Policies and Procedures codified in 7 CFR part 1794.

Government agencies, private organizations, and the public are invited to participate in the planning and analysis of the proposed action.

Representatives from the RUS and Tri-State will be available at the scoping meetings to discuss the environmental review process, describe the Proposal, discuss the scope of environmental issues to be considered, answer questions, and accept comments. RUS and Tri-state will use comments and input provided by all interested parties in the preparation of an Environmental Assessment. Tri-State will submit the EA to RUS for review. RUS will use the environmental document to determine the significance of the impacts of the Proposal and may adopt the environmental document as its EA for the proposal. RUS’s EA will be available for review and comment for 30 days. Announcement of the availability of the EA will be published in the Federal Register and in newspapers with circulation in the project area.

Should RUS determine that the preparation of an Environmental Impact Statement is not necessary, it will prepare a Finding of No Significant Impact (FONSI). Announcement of the availability of a FONSI will be published in the Federal Register and in newspapers with circulation in the project area. Any final action by RUS related to the Proposal will be subject to, and contingent upon, compliance with all relevant Federal, State and local environmental laws and regulations and completion of the environmental review procedures as prescribed by RUS’s Environmental Policies and Procedures (7 CFR part 1794).

Mark S. Plunk,
Director, Engineering and Environmental Staff, USDA, Rural Utilities Service.

BILLING CODE P
PROOF OF PUBLICATION
(2015.5 C.C.P.)

State of California
County of SAN BERNARDINO

Notice Type: GPN - GOVT PUBLIC NOTICE

Ad Description:
NOTICE OF PREPARATION/NOTICE OF INTENT AND PUBLIC SCOPING MEETING ANNOUNCEMENT

I am a citizen of the United States and a resident of the State of California; I am over the age of eighteen years, and not a party to or interested in the above entitled matter. I am the principal clerk of the printer and publisher of the SAN BERNARDINO COUNTY SUN, a newspaper published in the English language in the city of SAN BERNARDINO, County of SAN BERNARDINO, and adjudged a newspaper of general circulation as defined by the laws of the State of California by the Superior Court of the County of SAN BERNARDINO, State of California, under date 06/20/1993, Case No. 7803. That the notice, of which the annexed is a printed copy, has been published in each regular and entire issue of said newspaper and not in any supplement thereof on the following dates, to-wit:

03/05/2012

Executed on: 03/06/2012
At Los Angeles, California

I certify (or declare) under penalty of perjury that the foregoing is true and correct.

Signature

SBS #: 2272568

LEGAL NOTICE
Mitsubishi Cement Corporation South Quarry Project
USDA Forest Service
San Bernardino National Forest Mountain View Reservoir District
and County of San Bernardino
Mitsubishi Cement Corporation is submitting to the San Bernardino National Forest and San Bernardino County, for the preparation of a Plan of Operation and Reclamation Plan for the South Quarry. The project will also result in an amendment to the Desert Sun Place scenic integrity objectives of the Forest Land Management Plan. The South Quarry is proposed to total approximately 153.6 acres, consisting of a 126-acre quarry, a 27-acre landscape buffer, a 22.5-acre haul road, 1.8 miles in length, and a temporary construction road of 0.7 acres. The South Quarry and haul road would be located within 500 acres of an unoccupied claim owned by Mitsubishi Cement Corporation of the San Bernardino National Forest with approximately 1.6 acres of the haul road located on Mitsubishi Cement Corporation fee land and where it enters the existing legal pit road. The South Quarry will be blasted with rock from the existing East and West pits to feed the existing Cushenbury cement plant. Mitsubishi proposes to mine the South Quarry for approximately 100 years. No modification to the Cushenbury Canyon Plant is proposed as part of this project. Construction of the project would be conducted through the life of the quarry and, at the conclusion of excavations, 5 years of active reclamation and revegetation would be implemented followed by vegetation monitoring and remediation until revegetation goals are achieved. The complete Plan of Operation and Reclamation Plan is available on the San Bernardino National Forest website at: https://data.ecosystem-management.org/npsearch?project=3501

An Environmental Impact Report/Environmental Impact Statement (EIR/EIS) is being prepared for the project. Your comments are being requested to help identify key issues, develop alternatives and mitigation measures, and analyze effects of the proposed action. Please be as specific as possible in expressing your comments so they can be effectively addressed. Comments received includ-
FROM: San Bernardino County Land Use Services Department
385 N. Arrowhead Avenue, First Floor, San Bernardino, CA 92415-0182
TO: Interested Agencies, Organizations, and Individuals
SUBJECT: Notice of Preparation of a Draft Environmental Impact Report and Environmental Impact Statement

Project Title: Mitsubishi Cement Corporation South Quarry
Project Applicant: Mitsubishi Cement Corporation

Introduction
An environmental review of the proposed Mitsubishi Cement Corporation South Quarry Project (Project) will be conducted under both the California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA). Implementation of the Project will require discretionary approvals from federal, state, and local agencies and, therefore, this project is subject to the environmental review requirements of both CEQA and NEPA. To ensure coordination between the CEQA and NEPA processes, and to avoid duplication of effort, a joint EIR/EIS is being prepared as recommended by CEQA Guidelines Section 15222 and 40 CFR 1506.25.

The County of San Bernardino (County) is the CEQA Lead Agency issuing this Notice of Preparation (NOP). The U.S. Department of Agriculture, Forest Service (USFS) is the NEPA Lead Agency for the EIR/EIS, and has issued a separate Notice of Intent (NOI) for the Project, as required by NEPA. Both the NOP and the NOI are intended to solicit comments regarding the scope and content of the environmental information in the forthcoming EIR/EIS.

This NOP provides summary information about the Project and its location. More detailed information about Project construction, operations, and the probable environmental effects are contained in the attached Initial Study.

Project Description Summary
Mitsubishi Cement Corporation (MCC) presently operates two limestone quarries (West and East Pits) and the Cushebury Cement Plant on private lands in San Bernardino County. MCC is requesting approval of a Plan of Operations from the USFS, and a Reclamation Plan from the County of San Bernardino. The requested plan approvals would add a 153.6-acre South Quarry operation to the approximately 500-acre existing surface mining complex. The complete Plan of Operation and Reclamation Plan document is available on the San Bernardino National Forest website at: http://data.ecosystem-management.org/nepaweb/nepa_project_exp.php?project=36511

The proposed South Quarry will consist of a 128-acre high-grade limestone quarry, a 2.7-acre landscape berm, a 22.2-acre haul road 1.8 miles in length, and 0.7 acres for a temporary construction road. MCC is requesting a 120-year operations plan to mine at an average production rate of 1.3 million tons per year of ore (156 million tons total) and 150,000 tons per year of waste rock. Higher grade limestone from the South Quarry will be blended with lower grade limestone from the West and East Pits in order to meet the limestone specifications to feed the adjacent Cushebury Cement Plant. No modifications are proposed for the Cement Plant. Concurrent reclamation will be conducted throughout the life of the quarry and, at the conclusion of excavations, five (5) years of active reclamation and revegetation will be implemented followed by revegetation monitoring and remediation until revegetation goals are achieved.
Comment Submittal Deadline

Comments are solicited from federal, state, and local agencies and the general public. Agencies will need to use the EIR/EIS when considering a permit or other approval for the Project, if applicable. The County requests agencies’ views as to the scope and content of the environmental information that is pertinent to the agency’s statutory responsibilities in connection with the proposed Project. All comments received in response to this NOP will be reviewed and considered in determining the scope and content of the EIR/EIS. Due to time limits defined by CEQA, your response should be sent at the earliest possible date, but not later than **April 6, 2012**.

Please include the contact person’s name, phone number, and address in your comment letter, and write “**Mitsubishi Cement Corporation South Quarry Project**” in the subject line. Comments must be mailed, e-mailed, or faxed to:

Anne Surdzial, AICP
ECORP Consulting, Inc.
215 N. 5th Street
Redlands, CA 92374
Email: asurdzial@ecorpconsulting.com
Fax: (909) 307-0056

Public Scoping Meetings

The County and USFS will host two scoping meetings to provide the opportunity for the public to learn about the Project and to identify issues to be addressed during the EIR/EIS process. Public Scoping meetings will be held on:

- **Tuesday, March 13, 2012 from 7:00 p.m. to 9:00 p.m.** at the Lucerne Valley Community Center, 33187 Old Woman Springs Road, Lucerne Valley, California 92356, and
- **Tuesday, March 20, 2012 from 7:00 p.m. to 9:00 p.m.** at the Big Bear Discovery Center, 40971 North Shore Drive (Highway 38), Fawnskin, California 92333.

The meetings will be in open house format so that the public can learn more about the project and provide comments on the scope and content of the EIR/EIS.

County Contact Information

Questions about the Project and County review and approval processes may be directed to:

Richard K. Goacher
Consultant to:
San Bernardino County
Land Use Services Department
385 N. Arrowhead Avenue
San Bernardino, California 92415
(949) 450-0171
Email: rgoacher@rgpcorp.com

Signature:
Date: March 1, 2012
Project Description

Setting. Mitsubishi Cement Corporation’s proposed South Quarry is within portions of Sections 14, 15, 22, and 23 Township 3 North, Range 1 East. Elevations at the South Quarry site currently range from 5,555 to 6,675 feet (Figure 1 in the attached Initial Study). The proposed site is located on the north slope of the San Bernardino Mountains south of Lucerne Valley in southwestern San Bernardino County (Figure 2 in the attached Initial Study). The South Quarry and a portion of the haul road, together totaling 147 acres, would be located almost entirely on 440 acres of unpatented claims owned by MCC on public federal land under the jurisdiction of the San Bernardino National Forest (SBNF), and approximately 6.6 acres of the haul road would be located on MCC fee land. The proposed South Quarry site is bounded on the west, south, and east by undisturbed open space (forest lands) and to the north by approximately 800 feet of SBNF land and the existing East Pit and West Pit (under development), and the Cushenbury Cement Plant. Specialty Minerals Inc. (SMI) operates the Marble Canyon Quarry west of the proposed South Quarry on 132 acres, and other quarries, waste rock stockpiles and a process plant operated by SMI are located northwest of the proposed South Quarry.

Project Need. MCC’s existing Cushenbury Cement Plant requires a limestone feed of approximately 2.6 million tons per year of a specific blend of limestone in order to manufacture cement. In 2004, as the existing East Pit neared its exhaustion of cement grade limestone, the West Pit expansion was approved by the County of San Bernardino on 191 acres to the west of the existing East Pit with approximately 217 million tons of limestone reserves. The amount of high-grade limestone to blend with the lower grades of limestone to meet the feed requirement for the cement plant was determined to be inadequate for the life of the mine. However, based on drilling conducted during the winter of 2009 and 2010, the South Quarry site has estimated proven and inferred reserves of over 200 million tons of mostly high- to medium-grade limestone rock.

Quarry Production Rates. The Project proposes that higher grade limestone from the South Quarry be blended with lower grade limestone excavated from the West and East Pits at a ratio of approximately 50/50 in order to meet the limestone specifications to feed the adjacent Cushenbury Cement Plant.

Given the limestone resources available, the South Quarry would be mined at an average production rate of 1.3 million tons per year of ore and 150,000 tons per year of waste rock for up to 120 years. At this time, MCC is requesting a 120-year operations plan excavating an approximate total of 156 million tons of ore. The Cushenbury Cement Plant requires a limestone feed of approximately 2.6 million tons per year, and this would not change as a result of the South Quarry Project. No change to the throughput or operations of the cement plant are proposed since production from the East and West Pits would be reduced to an average of 1.3 million tons per year of ore and 150,000 tons per year of waste rock. Therefore, the overall limestone production of 2.6 million tons per year and 300,000 tons per year of waste rock at the mining complex would not change.

Project Phasing. The development of the South Quarry would consist of construction of the 1.8-mile long haul road, four phases of excavations, concurrent reclamation, and then final reclamation followed by revegetation monitoring (Figure 3 in the attached Initial Study). During the first two years, the 1.8-mile long haul road would be constructed. The planned haul road would access the South Quarry at 5,950 feet above mean sea level (AMSL) and traverse down the north slope to an elevation of 5,050 feet AMSL at the southwest corner of the existing East Pit. The road’s surface width would be 50 to 60 feet with a grade not to exceed 10% and it would have a surface of crushed limestone.

The excavation plan for the South Quarry is divided into four phases based on operational, engineering, and environmental concerns with the development of the main quarry to a maximum depth of 5,365 feet AMSL, or 1,215 feet below the quarry rim on the south. Phase 1A would be initiated after construction of the haul road and compliance with preconstruction conditions and has ore reserves of approximately 3.5
years. Phase 1B would excavate the southeast 31 acres of the quarry. Reserves are estimated at about 29 million tons of ore. At an ore production rate of 1.3 million tons per year, Phase 1B would have a life of approximately 22 years. Phase 2 would excavate the central 85 acres of the quarry. Reserves are estimated at 19 million tons of ore. At an ore production rate 1.3 million tons per year, Phase 1B would have a life of approximately 14.5 years for a cumulative total of 40 years from the commencement of mining. Phase 3 would be an approximately 40-year excavation phase on approximately 75 acres within the central part of the quarry within the footprint of Phase 2. Mining would excavate to floor elevation of approximately 5,905 feet, a depth of approximately 315 feet below the Phase 2 floor elevation of 6,130 feet AMSL. Reserves are estimated at over 52 million tons of ore. Phase 4 would be the final excavation phase on approximately 65 acres within the central part of the proposed South Quarry configuration, again within the footprint of Phase 2, to complete the 120-year lifespan. Mining would excavate to floor elevation of approximately 5,365 feet, a maximum depth of approximately 550 feet below the Phase 3 floor elevation of 5,905 feet AMSL. Reserves are estimated at 52 million tons of ore.

Minimal amounts of overburden are expected as the limestone is generally exposed across the quarry site. Any topsoil onsite would be in the form of smaller eroded limestone gravel that may contain organic material and seeds. This surface material would be salvaged and stored in separately marked stockpiles for future reclamation efforts along and above the top benches and used for the construction of the landscape berm along the southern rim. Instead of removing the waste rock and depositing it in a separate waste stockpile(s) outside the rim of the quarry, this plan proposes to backfill the waste rock within Phases 1B and 4 as mining progresses with depth.

Reclamation. Mitsubishi Cement Corporation proposes to reclaim the quarry site to meet both Forest Service Minerals Regulations (36 CFR 228, Subpart A) under the jurisdiction of the San Bernardino National Forest, and the California Surface Mining and Reclamation Act (PRC, Div. 2, Chtr. 9, § 2710 et seq.) implemented by San Bernardino County that would minimize impacts to the surrounding environment. Due to planned extraction, the permanent perimeter quarry slopes would be reclaimed from the rim downward as completed per phase to meet designed slopes dependent on the findings of the ongoing slope stability assessments. Reclamation would consist of sloping excavated cuts and benches as necessary to meet the designed 0.55H:1V (horizontal:vertical) overall slope and to round the rims of the final benches. Each bench would be sloped inward toward the vertical wall to capture any precipitation or runoff. The individual benches would be approximately 45 feet vertical and 25 feet wide unless required to be flatter in specific areas, as determined by geological mapping during ongoing quarry operations or where the waste rock stockpiles would be located. Surface material salvaged for revegetation would be limited due to the surficial rock conditions onsite. Available material containing the native seed bank would be placed on the benches and would be augmented with additional growth media and mulch in “islands” to provide future sources of seeds. The revegetation methods include seeding with native perennial species, plantings grown in a nursery whether started from seed, cuttings or whole plant salvage from seeds collected at or near the site, and planting plants salvaged from new mining areas. The Biological Monitoring Plan would be an ongoing effort to assess the results of revegetation on the disturbed areas of the site. The monitoring plan would be followed annually to monitor and assess completed revegetated areas and areas where revegetation is being planned or just beginning.
Avoidance/Minimization and Environmental Protection Measures. The Plan of Operations includes avoidance/minimization and environmental protection measures, including:

1. Mitsubishi Cement Corporation will, upon withdrawal, quit-claim specified unpatented mining claims held within San Bernardino National Forest, and convey specified patented lands, which have been verified by the Forest Service to contain occupied endangered species habitat on a 3-to-1 ratio (acres and conservation value) as mitigation for impacts of the new quarry on Cushenbury buckwheat (*Eriogonum ovalifolium var. vineum*), Cushenbury oxytheca (*Oxytheca parishii var. goodmaniana*), and Parish’s daisy (*Eriogonum parishii*).

2. Control of surface drainage, erosion, and sedimentation of the proposed haul road and quarry operations will involve the following primary components currently being implemented for existing operations:
 a. Limiting surface disturbance to the minimum area required for active operations.
 b. Diverting runoff, where operationally feasible, such that runoff from undisturbed areas does not enter the area of active operations.
 c. Using ditches, sediment basins, and localized control and maintenance measures to intercept and control runoff along the haul road.
 d. Stabilizing disturbance areas through regrading, revegetation, and other restoration practices.

3. To avoid incidental killing of birds protected under the Migratory Bird Treaty Act, two measures will be implemented: (1) Complete all vegetation removal or initial grading outside the breeding season (i.e., do not remove potential nesting habitat from February 1 through August 31), or (2) Prior to vegetation removal and after survey flagging is in place showing the limits of grading, confirm that no birds are nesting in areas to be disturbed.

4. The occurrence of weeds on-site shall be monitored by visual inspection. The goal is to prevent weeds from becoming established and depositing seeds in areas to be revegetated at a later date. No areas will be allowed to have more than 20 percent of the ground cover provided by nonnative plant species. If inspections reveal that weeds are becoming an issue or have established on-site, then removal will be initiated. Inspections shall be made in conjunction with revegetation monitoring.

Government Agency Reviews and Permits

The County will be the CEQA Lead Agency and will decide whether to approve the Reclamation Plan following the environmental analysis in the EIR/EIS. The USFS will be the lead Federal agency for approving the Project and will decide whether or not to approve the Plan of Operation following the environmental analysis in the EIR/EIS. Other public agency approvals include:

- U.S. Fish and Wildlife Service – Section 7 Consultation with Forest Service through the Carbonate Habitat Management Strategy Plan
- California Department of Fish and Game – 1602 Streambed Alteration Agreement
- Regional Water Quality Control Board, Colorado River Region – 401 Water Quality Certification.
Potential Environmental Impacts

The lead agencies have determined that this project could result in significant environmental impacts and/or have a significant impact on the quality of the human environment. As such, preparation of a joint EIR/EIS is appropriate. A CEQA Initial Study has been prepared for the proposed Project, and is attached to this NOP. As described in the Initial Study, the following environmental resources will be evaluated in the EIR/EIS:

- Aesthetics
- Forestry
- Air Quality
- Biological Resources
- Cultural Resources
- Paleontological Resources
- Geology and Soils Resources
- Greenhouse Gases
- Hazards and Hazardous Materials
- Hydrology and Water Quality
- Mineral Resources
- Noise
ATTACHMENT 2
Comment Letters
March 6, 2012

Ms. Anne Surdzial, AICP
ECORP Consulting, Inc.
215 N. 5th Street
Redlands, CA 92374

RE: NOTICE OF PREPARATION AND NOTICE OF PUBLIC SCOPING MEETING FOR THE MITSUBISHI CEMENT COMPANY SOUTH QUARRY PROJECT

Dear Ms. Surdzial:

Thank you for providing the San Bernardino County Department of Public Works (Department) the opportunity to comment on the above-referenced project.

Following Department review of the subject document, it is requested that a copy of the DEIR/DEIS and any technical studies and/or reports be submitted to this Department for further review when available. At that time, the Department will comment on the proposed project and its possible impacts on existing and/or future Flood Control District facilities or County roads.

If you have any questions or require additional information, please do not hesitate to contact me at 909-387-8109.

Sincerely,

JOHN SCHATZ, AICP
Supervising Planner
Environmental Management Division

JS:EH:nh/CEQA Request_MCC DEIR-DEIS_Mitsubishi Cement South Quarry_ECORP

cc: Richard K. Goacher
rgoacher@rgpcorp.com
March 7, 2012

Anne Surdzial, AICP
ECORP Consulting, Inc
215 N. 5th Street
Redlands, CA 92374

Project: Mitsubishi Cement Company South Quarry Project

Dear Ms. Surdzial:

The Mojave Desert Air Quality Management District (District) has reviewed the Initial Study for the Mitsubishi Cement Corporation (MCC) in Lucerne Valley. MCC is proposing to develop and reclaim a new high-grade limestone quarry to the south of its existing East Pit, its West Pit (under development), and the Cushenbury Cement Plant. The proposed South Quarry is located approximately 6 miles south of the community of Lucerne Valley. The proposed South Quarry will total approximately 156.3-acres consisting of a 128-acre quarry, a 2.7 acre landscape berm, a 22.2-acre 1.8-mile haul road and a temporary construction road of 0.7 acres. The South Quarry and haul road would be located almost entirely (147 acres) on 440 acres of unpatented claims owned by the MCC on public federal land under jurisdiction of the San Bernardino National Forest with approximately 6.6 acres of the haul road located on MCC fee land where it enters the existing East Pit. The South Quarry development will not change the capacity or operation of the Cushenbury Cement Plant.

The District has reviewed the Initial Study and concurs with the determination of “Less than Significant” and “No Impact” for Air Quality issues.

Thank you for the opportunity to review this planning document. If you have any questions regarding this letter, please contact me at (760) 245-1661, extension 6726, or Tracy Walters at extension 6122.

Sincerely,

[signature]

Alan J. De Salvio
Supervising Air Quality Engineer

AJD/tw MCC IS.docx
Environmental Impact Report/Environmental Impact Statement for the Mitsubishi Cement Corporation South Quarry Project

COMMENTS

Please use this page to submit your input on the scope of the environmental impacts to be analyzed in the Draft EIR/EIS being prepared for the Mitsubishi Cement Corporation South Quarry Project. Your comments are an important part of creating a comprehensive EIR/EIS. When making your comments, please be as specific as possible.

Name
Roger S Peterson

Address
7927 Sky High Ln. Lucerne Valley, St 92356

E-mail
rlazwan@agotsky.com

Comments can also be submitted to:

Anne Surdzial, AICP
ECORP Consulting, Inc.
215 N. 5th Street
Redlands, CA 92374
Email: asurdzial@ecorpconsulting.com
Fax: (909) 307-0056

All comments must be received by April 6, 2012.

Comments

Please provide your comments below. If you need additional space, please use the reverse side of this sheet. Thank you.

I generally support this project. I would however ask that the road to the Burnt Pits area be reopened which is just to the south of the project site.

The historic site where the apple trees & old school site are is a great place to plant and hike and or deer hunt.

Thank you.
To whom it may concern.
Please accept my family’s request to not have Mitsubishi Cement Corporation tear down our mountain.
We moved to the mountains to enjoy its’ beauty and are strongly against any company taking it away especially for profit. As volunteers of the sbnfa organization our work is crucial to sustaining public lands and preserving them for today’s and tomorrow’s future generations. What Mitsubishi wants to do goes completely against our goals. We have worked hard removing trash, rebuilding and reforesting burned forest areas, and keeping trails safe and accessible to the fire departments and emergency agencies. We’ve studied and learned about how to protect and preserve our mountains and have spent enormous energy and money doing so. To have a company take it from us for their financial gain would make us feel everything we did was unappreciated.
There is much history from the old pioneer & gold mining days in this area, in addition my wife & kids along with myself have done many trail hikes here as well. We spend a great deal of time trying to teach our children about the forest and all it has to offer, I do not wish to try to explain about corporate greed at this point in time as my kids are still youngsters.
One of the philosophies that sbnfa.org has adopted is to volunteer and give back to the forest. I don’t feel that it is justly that we all gave back just so a profit-seeking corporation can take away what we worked so hard to give back. If Mitsubishi were granted the land that we’ve been trying to protect all along we would feel hurt and unsupported by anyone behind making this decision. It would be the wrong decision. Please do not allow them to take our lands.
Please do not make the wrong decision and prove my family’s time and money spent fruitless. BTW, please also note that cement kilns like the one’s Mitsubishi Cement Corporation uses emit toxic emissions of mercury, hydrogen chloride and organic hazardous air pollutants. We do not wish to continue to have the pollutants outlined in this article in our air nor increased.

Sincerely,
Ron, JoAnn, Lauren & John Thompson
3/23/2012

San Bernardino National Forest
Mitsubishi South Quarry Expansion Project
c/o Anne Surdzial,
ECORP Consulting, Inc.
215 N. 5th Street,
Redlands, CA 92374
asurdzial@ecorpconsulting.com

RE: Mitsubishi Cement Company South Quarry Expansion

Dear Ms. Surdzial,

Please accept the following comments on the Notice of Intent (“NOI”) to prepare a joint Environmental Impact Statement (“EIS”) and Environmental Impact Report (“EIR”) (EIS/R) for the Proposed Mitsubishi Cement Company South Quarry Expansion in compliance with the National Environmental Policy Act of 1969 (“NEPA”), as amended, and the California Environmental Quality Act (“CEQA”), on the potential impacts of the Proposed Mitsubishi Cement Company South Quarry Expansion (“Mitsubishi expansion”) on behalf of the Center for Biological Diversity (the “Center”). This project is proposed partially on Forest Service (“FS”) lands that are rich in important biological resources, including occupied habitat for the federally protected plants including the endangered Cushenbury buckwheat (*Eriogonum ovalifolium* var. *vineum*), Cushenbury oxytheca (*Acanthoscyphus parishii* var. *goodmaniana*), and the federally threatened Parish's daisy (*Erigeron parishii*) among other sensitive resources.

The Center is a non-profit environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center has over 350,000 members and supporters throughout California and the western United States, including within the vicinity of the project.

In addition to compliance with the FS Land Management Plan, the EIS/R must also demonstrate:

1) Consistency with the Carbonate Habitat Management Strategy
2) Protection of air quality (including an evaluation of greenhouse gas emissions);
3) Protection of adjacent wilderness and sensitive resources;
4) Protection of visual quality;
5) Protection of water quantity and quality; and
6) Protection of rare, sensitive, and imperiled species in the project area.
Additionally, other resources and issues are of concern to us and need to be addressed in detail as follow below:

Biological Resources

Based on the proposed project description, it appears that this expansion is proposed on an ecologically functional high desert landscape that hosts a suite of rare species. Careful documentation of the current site resources is imperative in order to analyze how best to site the project to avoid and minimize impacts and then to minimize and mitigate any unavoidable impacts.

Biological Surveys and Mapping

The Center requests that thorough, seasonal surveys be performed for sensitive plant species and vegetation communities, and animal species under the direction and supervision of the FS, County and resource agencies such as the US Fish and Wildlife Service and the California Department of Fish and Game. Full disclosure of survey methods and results to the public and other agencies without limitations imposed by the applicant must be implemented to assure full NEPA/CEQA/ESA compliance.

Confidentiality agreements should not be allowed for the surveys in support of the proposed project. Surveys for the plants and plant communities should follow California Native Plant Society (CNPS) and California Department of Fish and Game (CDFG) floristic survey guidelines\(^1\) and should be documented as recommended by CNPS\(^2\) and California Botanical Society policy guidelines. A full floral inventory of all species encountered needs to be documented and included in the EIS/R. Surveys for animals should include an evaluation of the California Wildlife Habitat Relationship System’s (CWHR) Habitat Classification Scheme. All rare species (plants or animals) need to be documented with a California Natural Diversity Data Base form and submitted to the California Department of Fish and Game using the CNDDB Form\(^3\) as per the State’s instructions\(^4\).

The Center requests that the vegetation maps be at a large enough scale to be useful for evaluating the impacts. Vegetation/wash habitat mapping should be at such a scale to provide an accurate accounting of wash areas and adjacent habitat types that will be directly or indirectly affected by the proposed activities. A half-acre minimum mapping unit size is recommended, such as has been used for other development projects. Habitat classification should follow CNPS’ Manual of California Vegetation (Sawyer et. al. 2009).

1 \[\text{http://www.cnps.org/cnps/rareplants/inventory/guidelines.php}\]
2 \[\text{http://www.cnps.org/cnps/archive(collecting.php}\]
3 \[\text{http://www.dfg.ca.gov/biogeodata/cnddb/pdfs/CNDDB.FieldSurveyForm.pdf}\]
4 \[\text{http://www.dfg.ca.gov/biogeodata/cnddb/submitting_data_to_cnddb.asp}\]
Adequate surveys must be implemented, not just a single season of surveys, in order to evaluate the existing on-site conditions. Due to unpredictable precipitation, desert organisms have evolved to survive in these harsh conditions and if surveys are performed at inappropriate times or year or in particularly dry years many plants that are in fact on-site may not be apparent during surveys (ex. annual and herbaceous perennial plants). This project site will also require late season surveys to evaluate the potential occurrence of rare plants that germinate and grow after summer monsoons. These late season surveys should occur in late August through early October, to ensure that these unique plant species are adequately surveyed.

Impact Analysis

The EIS/R must evaluate all direct, indirect, and cumulative impacts to sensitive habitats, including impacts associated with the establishment of unpermitted recreational activities, the introduction of non-native plants, the introduction of additional lighting and noise, and the loss and disruption of essential habitat due to edge effects.

A number of rare resources are known to in the vicinity of the proposed project including but not limited to:

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>State/Federal/Other Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushenbury oxytheca</td>
<td>Acanthoscyphus parishii var. goodmaniana</td>
<td>E/1B.1</td>
</tr>
<tr>
<td>Cooper's hawk</td>
<td>Accipiter cooperii</td>
<td>/WL/</td>
</tr>
<tr>
<td>Golden eagle</td>
<td>Aquila chrysaetos</td>
<td>BGE/FP/</td>
</tr>
<tr>
<td>Cushenbury milk-vetch</td>
<td>Astragalus albans</td>
<td>E/1B.1</td>
</tr>
<tr>
<td>San Bernardino milk-vetch</td>
<td>Astragalus bernardinus</td>
<td>/1B.2</td>
</tr>
<tr>
<td>burrowing owl</td>
<td>Athene cunicularia</td>
<td>/1B.1</td>
</tr>
<tr>
<td>Parish's brittlescale</td>
<td>Atriplex parishii</td>
<td>/1B.1</td>
</tr>
<tr>
<td>pinyon rock-cress</td>
<td>Boechera dispar</td>
<td>/2.3</td>
</tr>
<tr>
<td>Parish's rock-cress</td>
<td>Boechera parishii</td>
<td>/1B.2</td>
</tr>
<tr>
<td>Shockley's rock-cress</td>
<td>Boechera shockleyi</td>
<td>/2.2</td>
</tr>
<tr>
<td>Palmer's mariposa-lily</td>
<td>Calochortus palmeri var. palmeri</td>
<td>/1B.2</td>
</tr>
<tr>
<td>alkali mariposa-lily</td>
<td>Calochortus striatus</td>
<td>/1B.2</td>
</tr>
<tr>
<td>white pygmy-poppy</td>
<td>Canbya candida</td>
<td>/4.2</td>
</tr>
<tr>
<td>pallid San Diego pocket mouse</td>
<td>Chaetodipus fallax pallidus</td>
<td>/SSC/</td>
</tr>
<tr>
<td>Townsend's big-eared bat</td>
<td>Corynorhinus townsendii</td>
<td>/SSC/</td>
</tr>
<tr>
<td>purple-nerve cymopterus</td>
<td>Cymopterus multinervatus</td>
<td>/2.2</td>
</tr>
<tr>
<td>Parish's daisy</td>
<td>Erigeron parishii</td>
<td>T/1B.1</td>
</tr>
<tr>
<td>vanishing wild buckwheat</td>
<td>Eriogonum evanidum</td>
<td>/1B.1</td>
</tr>
<tr>
<td>Cushenbury buckwheat</td>
<td>Eriogonum ovalifolium var. vineum</td>
<td>E/1B.1</td>
</tr>
<tr>
<td>western mastiff bat</td>
<td>Eumops perotis californicus</td>
<td>/SSC/</td>
</tr>
<tr>
<td>prairie falcon</td>
<td>Falco mexicanus</td>
<td>/NL/</td>
</tr>
<tr>
<td>desert tortoise</td>
<td>Gopherus agassizii</td>
<td>T/T/</td>
</tr>
<tr>
<td>silver-haired bat</td>
<td>Lasionycteris noctivagans</td>
<td></td>
</tr>
<tr>
<td>hillside wheat grass</td>
<td>Leymus salinus ssp. mojavensis</td>
<td>/2.3</td>
</tr>
<tr>
<td>long-eared myotis</td>
<td>Myotis evotis</td>
<td></td>
</tr>
<tr>
<td>fringed myotis</td>
<td>Myotis thysanodes</td>
<td></td>
</tr>
<tr>
<td>long-legged myotis</td>
<td>Myotis volans</td>
<td></td>
</tr>
<tr>
<td>Yuma myotis</td>
<td>Myotis yumanensis</td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Federally Listed</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>San Bernardino ragwort</td>
<td>Packera bernardina</td>
<td>E</td>
</tr>
<tr>
<td>Parish's phacelia</td>
<td>Phacelia parishii</td>
<td>E</td>
</tr>
<tr>
<td>coast horned lizard</td>
<td>Phrynosoma blainvillii</td>
<td></td>
</tr>
<tr>
<td>Parish's popcorn-flower</td>
<td>Plagiobothrys parishii</td>
<td>E</td>
</tr>
<tr>
<td>desert monkey grasshopper</td>
<td>Psychomastax deserticola</td>
<td></td>
</tr>
<tr>
<td>Parish's alkali grass</td>
<td>Puccinellia parishii</td>
<td>E</td>
</tr>
<tr>
<td>Latimer's woodland-gilia</td>
<td>Saltugilia latimeri</td>
<td>E</td>
</tr>
<tr>
<td>Salt Spring checkerbloom</td>
<td>Sidalcea neomexicana</td>
<td>E</td>
</tr>
<tr>
<td>Badger</td>
<td>Taxidea taxus</td>
<td>E</td>
</tr>
<tr>
<td>Le Conte's thrasher</td>
<td>Toxostoma lecontei</td>
<td>E</td>
</tr>
<tr>
<td>Desert kit fox</td>
<td>Vulpes velox</td>
<td>E</td>
</tr>
<tr>
<td>Mohave ground squirrel</td>
<td>Xerospermophilus mohavensis</td>
<td>E</td>
</tr>
</tbody>
</table>

Federal:
- **E** – Federally listed, endangered species likely to become extinct with the foreseeable future
- **T** – Federally listed, threatened: species likely to become endangered within the foreseeable future
- **BGE** – protected under the Bald and Golden Eagle Act

State:
- **E** – State listed as endangered
- **T** – State listed as threatened
- **FP** – State fully protected species (no take permits can be given)
- **SP** – Protected fur-bearing mammals (California Code of Regulations, Title 14, Section 460)
- **SSC** – California Species of Special Concern Species of concern to CDFG because of declining population levels, limited ranges, and/or continuing threats have made them vulnerable to extinction.

California Plant List
- **List 1B** - Rare, threatened, or endangered in California and elsewhere
- **List 2** - Rare, threatened, or endangered in California but more common elsewhere
- **List 3** - Plants which need more information
- **List 4** - Limited distribution – a watch list
 - 0.1 - Seriously threatened in California (high degree/immediacy of threat)
 - 0.2 - Fairly threatened in California (moderate degree/immediacy of threat)
 - 0.3 - Not very threatened in California (low degree/immediacy of threats or no current threats known)

While all of these species have been identified at the scoping stage as occurring very near the proposed Mitsubishi expansion area, the EIS/R must adequately address the impacts and propose effective ways to avoid, minimize and mitigate the impacts to them.

Carbonate Endemic Plants

A suite of rare and federally protected plant species occur on the limestone and dolomite substrates that are the focus of the expansion areas. The EIS/R must identify the number and locations of these rare plant occurrences and identify alternatives to avoid them. If avoidance is impossible, then minimizing impacts should be thoroughly addressed. A robust mitigation scenario should be proposed well above the 3:1 mitigation ratio proposed in the NOI. Impacts to federally designated critical habitat should be identified and addressed. Unfortunately, reliance upon mitigation strategies included in the Carbonate Habitat Management Strategy (CHMS) is not adequate to mitigate impacts, because the CHMS was never “jumpstarted” through initial acquisitions and set-asides required by that plan. Therefore more robust mitigation ratios of 5:1 at minimum should be included for this proposed mine expansion. Ultimately, any impacts to these carbonate endemic plants and their habitat results in further elimination of ecologically functional habitat for these imperiled species. Reclamation and revegetation, while important, still results in a net loss of habitat for these species that are already edging closer to extinction.
Avoidance of the rare plants located within the proposed expansion area is preferable because of the general lack of success in transplanting rare plants5. If transplantation is to be considered as even a part of the mitigation strategy, a detailed plan must be included as part of the draft EIS/R and include the methodology for determination of appropriate conservation areas where plants may be transplanted, when/how plants are to be transplanted and identification of success criteria for transplantation. Monitoring of the transplanted plants needs to occur for a time period that is realistic to evaluate long-term success of the plants.

\textit{Desert Tortoise}

While the Mitsubishi expansion area may not be prime desert tortoise habitat, we still have concerns about impacts to this species which continues to decline throughout its range despite being under federal and state Endangered Species Acts protection as threatened6. If desert tortoise are found on the project site, the DEIS/R must first look at ways to avoid impacts to the desert tortoise, for example, by identifying and analyzing alternative sites outside of desert tortoise occupied habitat. The DEIS/R must also look at ways to minimize any impacts that it finds are unavoidable, for example, limiting the number and use of access roads to the project. Acquisition of lands that will be managed in perpetuity for conservation must be included as part of the strategy to mitigate impacts to all sensitive species, and mitigation lands should be high-quality habitat and, at minimum 5:1 mitigation should be provided of all acres of desert tortoise habitat destroyed. Set-aside conservation lands are particularly important because the project as proposed appears to have little or no compatibility with on-site conservation for desert tortoise.

While relocation will likely be necessary for any desert tortoise found on site, translocation as a long-term strategy for minimizing and mitigating impacts to desert tortoise may be a tool for augmenting conservation of the desert tortoise7, but it cannot substitute for other mitigation such as preservation of habitat. Moreover, to date, translocation does not have a proven track record. If translocation is to be a part of the mitigation strategy, a detailed plan must be included as apart of the draft EIS/R and explain the methodology for determination of appropriate conservation area where tortoises may be translocated, impacts to existing “host” tortoise populations that occur on the translocation site, when/how the tortoise are to be translocated, how tortoise diseases will be addressed, and requisite monitoring of host and translocated tortoises, etc. Monitoring of the translocated and existing “host” tortoises needs to occur for a long enough time period that is realistic to evaluate success of the translocation – definitely longer than a single year – 10 years may be a more realistic minimum for tracking impacts to this long lived species. Success criteria for translocation must also be clearly identified. The temporary project site needs to be fenced with tortoise proof fencing during construction and the permanent project sites need to be fenced to prevent tortoise mortality. All associated roads also need to be fenced.

5 Fiedler 1991
6 http://www.fws.gov/nevada/desert_tortoise/dt_reports.html
7 Field et al 2007
An aggressive raven prevention plan also needs to be developed as part of the EIS/R, and be made available for public review as part of the EIS/R and followed during project development and implementation.

Other Rare Species

The diversity of rare species found in the vicinity of the proposed project site is impressive and suggests that the site has great ecological value. The EIS/R must clearly address a proposal for avoiding, minimizing and mitigating the impacts to all of the rare species that utilize the site for part or all of their lifecycle and fully explore alternatives.

The proposed expansion area is also likely a foraging areas for a suite of rare species including but not limited to the desert bighorn sheep and golden eagles. Golden eagles have been documented to successfully nest in the adjacent mountains. Unfortunately, golden eagles in the western United States are declining. Other industrial development in the deserts of California and elsewhere are impacting foraging habitat for this iconic species as well as directly impacting golden eagles. The EIS/R must incorporate all guidance on golden eagles, evaluate impacts to them as requirements by the U.S. Fish and Wildlife Service8, and evaluate the need for a “take” permit under the Bald and Golden Eagle Protection Act.

Under California Code of Regulations, Title 14, section 460, fur bearing mammals including the desert kit fox and the badger are not allowed to be “taken”. The EIS/R must identify potential impacts to these state protected species.

Acquisition of lands that will be managed in perpetuity for conservation must be included as part of the strategy to avoid, minimize and mitigate impacts to these species as well.

The DEIS/R should also map and evaluate the number of acres of cryptobiotic soils that will be impacted. These biotically active soil crusts are key components especially in desert ecosystems where they provide a variety of services, including but not limited to soil stabilization, water retention, and seed germination sites.

Water Resources

The project appears to impact on-site drainages. The EIS/R must clarify the impacts to the jurisdictional Waters of U.S. and the Waters of the State of California, and avoid, minimize and mitigate any impacts.

Air Quality

Activities associated with mining often create dust and PM10 emissions that are harmful to human and wildlife health. The Mojave Air Quality Management region is already out of compliance for PM10 levels set by the Clean Air Act. The DEIS/R needs to fully evaluate additional impacts to air quality in this polluted air basin and provide clear and effective

8 http://www.fws.gov/migratorybirds/baldeagle.htm
mitigation measures to minimize hazardous dust from escaping the expansion site. Analyses should also include the effect of dust on adjacent open space including the reduction in biomass from dust coating surfaces of photosynthetic organism (primarily plants, but also cryptobiotic soils, which provide soil stabilization).

Green House Gases

The proposed project will also increase greenhouse gas emissions and those emissions should be quantified and off-set. This would include emissions from equipment, car and truck trips associated with the operations that require the use of gas, as well as the cement manufacturing that the mined material is intended to support.

Carbon dioxide is produced as the result of the combustion of fossil fuels, including the combustion that occurs at cement plants. Cement production is an energy and raw material intensive process that results in CO₂ generation from both the energy consumed in making the cement and in the chemical process itself. Cement plants are the fourth-largest contributor to U.S. CO₂ pollution, behind only fossil fuel combustion, non-energy use of fuels, and iron and steel production and metallurgical coke production; they are also the second largest source of industrial CO₂ emissions in the United States. Cement plants accounted for 33.3 terragrams CO₂eq. in 1990 and 44.5CO₂eq. in 2007. The proposed expansion will also facilitate increased cement production and the greenhouse gas emissions from that cement production must be identified and analyzed in the EIS/R.

The proposed project and associated activities will directly impact air quality and increase traffic in the area, and also facilitate cement manufacturing, therefore the greenhouse gas emissions associated with these activities must be disclosed in the EIS/R, avoided where possible, minimized and off-set or otherwise mitigated as well.

Other Issues

The stated objectives of the project must not unreasonably constrain the range of feasible alternatives evaluated in the EIS/R. The EIS/R must establish an independent set of objectives that does not unreasonably limit the EIS/R’s analysis of feasible alternatives including alternative sites. At a minimum, alternatives including the no-action alternative, an environmentally preferred alternative and alternative mining scenarios including phasing based on successfully meeting restoration (not reclamation or revegetation) criteria.

Cumulative Impacts

Numerous industrial projects are being built and proposed in the project vicinity, along with a significant military base expansion to the northeast of the proposed Mitsubishi mining expansion. A thorough analysis of the cumulative impacts from all of these projects on the resources needs to be included.

10 Id. at ES-4, 44.
11 Id. at ES-4.
Thank you for your consideration of these comments. Please add us to the distribution list for the EIS/R and all notices associated with the project.

Sincerely,

Ileene Anderson
Biologist/Public Lands Desert Director
8033 Sunset Blvd., #447
Los Angeles, CA 90046
ianders@biologicaldiversity.org
323-654-5943

cc: via email
Thomas Hall, FS, thall@fs.fed.us
Brian Croft, USFWS, brian_croft@fws.gov
Kevin Hunting, CDFG, khunting@dfg.ca.gov
Kathleen Goforth, EPA, goforth.kathleen@epa.gov
March 29, 2012

Mr. Richard K. Goacher
Land Use Services Department
County of San Bernardino
385 N. Arrowhead Ave.
San Bernardino, CA 92415

Re: Notice of Preparation of Environmental Impact Report
Mitsubishi Cement Corporation South Quarry Project -- SCH# 2012031009

Dear Mr. Goacher:

The Department of Fish and Game (Department) appreciates this opportunity to comment on the Notice of Preparation for the Draft Environmental Impact Report (DEIR) for the Mitsubishi Cement Corporation South Quarry Project. The Department is responding as a Trustee Agency for fish and wildlife resources [Fish and Game Code Sections §711.7 and §1802 and the California Environmental Quality Act (CEQA) Guidelines Section §15386], and as a Responsible Agency regarding any discretionary actions (CEQA Guidelines Section §15381), such as a Lake or Streambed Alteration Agreement (California Fish and Game Code Sections §1600 et seq.) and/or a California Endangered Species Act (CESA) Permit (California Fish and Game Code Sections §2080 and §2080.1).

The Project involves the following: approval of a Plan of Operations from the United States Forest Service; a Reclamation Plan from the County of San Bernardino; and addition of a 153.6-acre South Quarry operation to the 500-acre existing surface mining complex. The Mitsubishi Cement Company (MCC) is requesting a 120-year operations plan to mine 1.3 million tons per year of ore and 150,000 tons per year of waste rock.

The Project is located on the north slope of the San Bernardino Mountains south of Lucerne Valley in southwestern San Bernardino County.

Biological Impacts

The "Proposed Mitsubishi Cement South Quarry: Preliminary Biological Resources Assessment" was prepared in August, 2010. The California Diversity Data Base (CNDDB) lists several species as being located in Lucerne Valley: prairie falcon, silver-haired bat, white pygmy poppy, and little mouse-tail. There are three species listings for the adjacent Cougar Buttes United States Geological Survey (USGS) quad sheet. These are: golden eagle, desert tortoise (federal and state threatened), and desert's bird beak. However, the CNDDB only includes species that are forwarded to CDFG from field biologists and is not a list of the species that may be found on-site.

Conserving California's Wildlife Since 1870
Implementation of the proposed Project may impact four listed threatened or endangered carbonate-endemic plants, three of which occur on the site: Parish’s daisy (federal threatened), Cushenbury buckwheat (federal endangered), and Cushenbury oxytheca (federal endangered). These plants are managed according to the “Carbonate Habitat Management Strategy” document. MCC is proposing to convey conservation easements and relinquish unpatented mining claims as mitigation for impacts to carbonate plants.

The “Development of the Cushenbury South Quarry: Potential Environmental Impacts to Nelson’s Bighorn Sheep and Suggested Mitigation” was prepared to analyze potential impacts to Nelson’s bighorn sheep.

The Department has the following recommendations and requests that these issues be addressed in the CEQA document. The remainder of the letter deals with other information requirements to be addressed in the EIR.

1. Provide a complete Project description that lists all the activities covered by this Project, including on- and off-site development;
2. Any biological assessments or focus surveys be conducted within one year of the distribution of the CEQA Document;
3. A jurisdictional delineation of State waters should be included in the CEQA Document, if warranted;
4. Sensitive plant surveys should be conducted according to the Department’s November 2009 guidance for Protocols for Surveying and Evaluating Impacts to Special Status Native Plant Populations and Natural Communities.
5. A conservation easement to be placed over any mitigation open space, a management plan and funding should be addressed;
6. Mitigation should be provided for federal and state listed species, sensitive plants and species of special concern;
7. The potential impact of dust from mining on biological resources; and,
8. A discussion of prior approvals and mitigation measures for the mine site.

The Department advises that any biological habitat assessments or walkovers be conducted within a year of distribution of the CEQA document. Habitat assessments that identify the possibility of listed threatened or endangered plants should also provide the results of any focus surveys in the CEQA document. CEQA documents that rely on future surveys or regulatory compliance (with the exception of pre-construction surveys for burrowing owls or bird nests) as mitigation may not satisfy the Department’s obligations under CEQA and may require future supplemental documents processed via CEQA.

The existing mining activity does not preclude the presence of native species, such as grassland species, the burrowing owl, foraging raptors, or riparian species. A basic biological resources survey should still be conducted at these sites and the results included in the CEQA document.

The Department is concerned about the continuing loss of jurisdictional waters of the State and the encroachment of development into areas with native habitat values. The DEIR should contain sufficient, specific, and current biological information on the existing habitat and species at the Project site; measures to minimize and avoid sensitive biological resources; and mitigation measures to offset the loss of native flora and fauna and State
waters. If the Project site contains Federally- or State-listed species, the DEIR should include measures to avoid and minimize impacts to these species as well as mitigation measures to compensate for the loss of biological resources. The DEIR should not defer impact analysis and mitigation measures to future regulatory discretionary actions, such as a Lake or Streambed Alteration Agreement, CESA Permit, or Federal Endangered Species Act (ESA) Permit.

This particular Project has the potential to have significant environmental impacts on sensitive flora and fauna resources, including Federally- and State-listed endangered species. Therefore, the DEIR should include an alternatives analysis which focuses on environmental resources and ways to avoid or minimize impacts to those resources.

To enable Department staff to adequately review and comment on the proposed Project, we suggest that updated biological studies be conducted prior to any environmental or discretionary approvals. The following information should be included in any focused biological report or supplemental environmental report:

1. Please provide a complete assessment of the flora and fauna within and adjacent to the Project area, with particular emphasis upon identifying endangered, threatened, and locally unique species and sensitive habitats.

 a. Please provide a thorough assessment of rare plants and rare natural communities, following the Department’s November 2009 guidance for Protocols for Surveying and Evaluating Impacts to Special Status Native Plant Populations and Natural Communities. The guidance document can be found at the following link: http://www.dfg.ca.gov/biogeodata/cnndb/pdfs/Protocols_for_Surveying_and_Evaluating_Impacts.pdf

 b. A thorough assessment of sensitive fish, wildlife, reptile, and amphibian species. Seasonal variations in use of the Project area should also be considered. Focused species-specific surveys, conducted at the appropriate time of year and time of day when the sensitive species are active or otherwise identifiable, are required. Acceptable species-specific survey procedures should be developed in consultation with the Department and the U.S. Fish and Wildlife Service.

 c. Rare, threatened, and endangered species to be addressed should include all those which meet the CEQA definition (See CEQA Guidelines, 15380)

 d. The Department’s California Natural Diversity Data Base in Sacramento should be contacted at (916) 327-5960 to obtain current information on any previously reported sensitive species and habitat, including Significant Natural Areas identified under Chapter 12 of the California Fish and Game Code.

2. A thorough discussion of direct, indirect, and cumulative impacts expected to adversely affect biological resources, with specific measures to offset such impacts.
a. CEQA Guidelines, 15125(a), direct that knowledge of the regional setting is critical to an assessment of environmental impacts and that special emphasis should be placed on resources that are rare or unique to the region.

b. Project impacts should be analyzed relative to their affects on off-site habitats. Specifically, this should encompass adjacent public lands, open space, adjacent natural habitats, and riparian ecosystems. In addition, impacts to and maintenance of wildlife corridor/movement areas, including access to undisturbed habitat in adjacent areas, should be fully evaluated and provided.

c. The zoning of areas for development projects or other uses that are nearby or adjacent to natural areas may inadvertently contribute to wildlife-human interactions. A discussion of possible conflicts and mitigation measures to reduce these conflicts should be included in the environmental document.

d. A cumulative effects analysis should be developed as described under CEQA Guidelines, 15130. General and specific plans, as well as past, present, and anticipated future projects, should be analyzed relative to their impacts on similar plant communities and wildlife habitats.

e. The document should include an analysis of the effect that the Project may have on the adjacent Western Riverside Multiple Species Habitat Conservation Plan or on other regional and/or subregional conservation programs or Habitat Conservation Plans. Under Sections 2800-2835 of the California Fish and Game Code, the Department, through the Natural Communities Conservation Planning (NCCP) program is coordinating with local jurisdictions, landowners, and the Federal Government to preserve local and regional biological diversity.

3. A range of alternatives should be analyzed to ensure that alternatives to the proposed Project are fully considered and evaluated (CEQA Guidelines 15126.6). A range of alternatives which avoid or otherwise minimize impacts to sensitive biological resources should be included. Specific alternative locations should also be evaluated in areas with lower resource sensitivity where appropriate.

a. Mitigation measures for Project impacts to sensitive plants, animals, and habitats should emphasize evaluation and selection of alternatives which avoid and/or otherwise minimize Project impacts. Off-site compensation for unavoidable impacts through acquisition and protection of high-quality habitat should be addressed.

b. The Department considers Rare Natural Communities as threatened habitats having both local and regional significance. Thus, these
communities should be fully avoided and otherwise protected from Project-related impacts.

c. The Department generally does not support the use of relocation, salvage, and/or transplantation as mitigation for impacts to rare, threatened, or endangered species. Department studies have shown that these efforts are experimental in nature and largely unsuccessful.

4. A CESA Permit must be obtained, if the Project has the potential to result in "take" of species of plants or animals listed under CESA, either during construction or over the life of the Project. CESA Permits are issued to conserve, protect, enhance, and restore State-listed threatened or endangered species and their habitats. Early consultation is encouraged, as significant modification to the proposed Project and mitigation measures may be required in order to obtain a CESA Permit. Revisions to the California Fish and Game Code, effective January 1998, require that the Department issue a separate CEQA document for the issuance of a CESA permit unless the Project CEQA document addresses all Project impacts to listed species and specifies a mitigation monitoring and reporting program that will meet the requirements of a CESA permit. For these reasons, the following information is requested:

a. Biological mitigation, monitoring, and reporting proposals should be of sufficient detail and resolution to satisfy the requirements for a CESA Permit.

b. A Department-approved Mitigation Agreement and Mitigation Plan are required for plants listed as rare under the Native Plant Protection Act.

5. The Department opposes the elimination of watercourses and/or their channelization or conversion to subsurface drains. All wetlands and watercourses, whether intermittent or perennial, must be retained and provided with substantial setbacks which preserve the riparian and aquatic values and maintain their value to on-site and off-site wildlife populations.

a. Under Section 1600 et seq. of the California Fish and Game Code, the Department requires the Project applicant to notify the Department of any activity that will divert, obstruct or change the natural flow or the bed, channel or bank (which includes associated riparian resources) of a river, stream or lake, or use material from a streambed prior to the applicant's commencement of the activity. Streams include, but are not limited to, intermittent and ephemeral streams, rivers, creeks, dry washes, sloughs, blue-line streams, and watercourses with subsurface flow. The Department's issuance of a Lake and Streambed Alteration Agreement for a project that is subject to CEQA will require CEQA compliance actions by the Department as a responsible agency. The Department, as a responsible agency under CEQA, may consider the local jurisdiction's (lead agency) Negative Declaration or Environmental Impact Report for the Project. However, if the CEQA document does not fully identify potential impacts to lakes, streams, and associated resources (including, but not
limited to riparian and alluvial fan sage scrub habitat) and provide adequate
avoidance, mitigation, monitoring, and reporting commitments, additional
CEQA documentation will be required prior to execution (signing) of the
Streambed Alteration Agreement. In order to avoid delays or repetition of
the CEQA process, potential impacts to a lake or stream, as well as
avoidance and mitigation measures need to be discussed within this CEQA
document. The Department recommends the following measures to avoid
subsequent CEQA documentation and Project delays:

i) Incorporate all information regarding impacts to lakes, streams and
associated habitat within the DEIR. Information that should be
included within this document includes: (a) a delineation of lakes,
streets, and associated habitat that will be directly or indirectly
impacted by the proposed Project; (b) details on the biological
resources (flora and fauna) associated with the lakes and/or
streams; (c) identification of the presence or absence of sensitive
plants, animals, or natural communities; (d) a discussion of
environmental alternatives; (e) a discussion of avoidance measures
to reduce Project impacts, (f) a discussion of potential mitigation
measures required to reduce the Project impacts to a level of
insignificance; and (g) an analysis of impacts to habitat caused by a
change in the flow of water across the site. The applicant and lead
agency should keep in mind that the State also has a policy of no
net loss of wetlands.

(ii) The Department recommends that the Project applicant and/or lead
agency consult with the Department to discuss potential Project
impacts and avoidance and mitigation measures. Early consultation
with the Department is recommended since modification of the
proposed Project may be required to avoid or reduce impacts to fish
and wildlife resources. To obtain a Streambed Alteration Agreement
Notification package, please visit our website at:
http://www.dfg.ca.gov/habcon/1600.html.

Thank you for this opportunity to comment. Please contact Robin Maloney-Rames at
(909) 980-3818, if you have any questions regarding this letter.

Sincerely,

[Signature]

Jeff Brandt
Senior Environmental Scientist

cc: State Clearinghouse, Sacramento
RE: Comments for the Mitsubishi Cement Corp. (MCC) South Quarry Project,

I am writing this comment opposing the proposed Mitsubishi South Quarry project for the following reason, as it is my opinion that MCC hasn't provided enough information as to what can be done to protect wild life and plant life along with proposed reclamation of said project. I will be including sections of MCC's San Bernardino County Initial Study Environmental Check list form asking that there is a need for further information provided not only to the public but also to the San Bernardino National Forest (SBNF) and to the County of San Bernardino.

Potential Environmental Impacts
The lead agencies have determined that this project could result in significant environmental impacts and/or have a significant impact on the quality of the human environment. As such, preparation of a joint EIR/EIS is appropriate. A CEQA Initial Study has been prepared for the proposed Project, and is attached to this NOP. As described in the Initial Study, the following environmental resources will be evaluated in the EIR/EIS:

- Aesthetics
- Forestry
- Air Quality
- Biological Resources
- Cultural Resources
- Paleontological Resources
- Geology and Soils Resources
- Greenhouse Gases
- Hazards and Hazardous Materials
- Hydrology and Water Quality
- Mineral Resources
- Noise

The following is the “Environmental Format” provided by MCC

1. No Impact: No impacts are identified or anticipated. Therefore, no mitigation measures are required and analysis in an EIR is not required.
2. Less than Significant Impact: No significant adverse impacts are identified or anticipated. Therefore, no mitigation measures are required, and analysis in an EIR is not required.
3. Less than Significant Impact with Mitigation Incorporated: Possible significant adverse impacts have been identified or anticipated, but mitigation measures have been identified that will reduce these impacts to a level below significant. The required mitigation measures are: (List mitigation measures). Provided the mitigation is required as a condition of project approval, no further analysis in an EIR is required.
4. Potentially Significant Impact: Potentially significant adverse impacts have been identified or anticipated.
An Environmental Impact Report (EIR) is required to evaluate these impacts, which are (Listing the impacts requiring analysis within the EIR).

There are many items in this report that have "Potentially Significant Impact" that need to be addressed as to how to manage those Potentially Significant Impact as to reduce the significant impact and those items are as follows;

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:
The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the following checklist Aesthetics- Biological Resources-Geology/soils- NOISE and the impact of the noise on the indigenous animals of the SBNF. I can’t imagine what the impact on the local animals in the proposed project site will be, and there is nothing indicated on how to reduce the impact on the wild life in this proposed project area. These animals which have been in this area for MANY years have no idea of what it takes to blast into the rocks for mining purposes, and the noise from it also, and the ground shaking under their feet, not to mention during the breeding/birthing period I am attaching 2 pictures, one being of Bear scat and t, thus other being Sheep, most likely Big Horn Sheep scat. These pictures were taken directly above and within the perimeter of the proposed South Quarry expansion, they will be marked exhibit 1&2, thus showing that there is active wild life in that area.

I. AESTHETICS - Would the project
 a) Have a substantial adverse effect on a scenic vista?
 b) Substantially damage scenic resources, including but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway?
 c) Substantially degrade the existing visual character or quality of the site and its surroundings?

All of the above items are listed as having Potentially Significant Impact. MCC provided photos from a significant distance from the proposed expansion site, none of which show the cut lines/ bench cuts that WILL indeed be visible from MANY miles away, also the one visual simulation Figure 13-view point 5 shows the section that will be visible from Hwy 18 heading north towards Lucerne Valley, this view also DOESN’T show the cut lines which are shown in Figure 12- Phase II, III, and IV cross section show an elevation change from 6200 feet elevation to a lower 5550 foot elevation. This will be a devastating change of elevation and dramatically visible to the public, also this View 5 WAS Not available at the scoping meeting here in Big Bear at the Discovery Center March 20, 2012. I had asked a rep from MCC as to why that View #5 wasn’t available and the answer wasn’t satisfactory to meet my needs and the needs of the public that attended that meeting. I am also attaching a photo taken from the east, which MCC has no views from that point, showing the proposed expansion site, and why is it that MCC didn’t provide that information. I will mark this photo as exhibit #3. All of MCC’s current bench cuts are visible from 30+ miles to the north and east, is this what is the standard of the mining industry and also fair to the visitors of the SBNF, and this will be visible for many centuries to come. I know my great/great grandchildren will be dead before this area is returned to it’s natural state if it EVER IS.
IV. BIOLOGICAL RESOURCES - Would the project:

a) Have substantial adverse effects, either directly or through habitat modifications, on any species identified as a candidate, sensitive or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

This is also a section that is listed as having a "Potentially Significant Impact", and as I stated earlier the impact on the local animals will be horrific, these local animals will have to look for new places to live, and what is MCC going to do for them. MCC claims that during the reclamation project that the animals will return to their natural state, which I have a hard time believing. MCC has stated in their initial report that these items will be addressed in the Environmental Impact Report (EIR). My question is what plans does MCC have to sustain life for these animals in the way of food and water.

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites? This is another section that is listed as "Potentially Significant Impact" and what are MCC’s plans to preserve these migratory wildlife corridors??

e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance? Anther item that is listed as "Potentially Significant Impact".

According to MCC’s report there are many local plants that ARE on the endanger species list and I see no plans on what MCC plans to do to restore these plants to their natural state. It just states that this will be another item in the EIR.

VI. GEOLOGY AND SOILS - Would the project: There are several items in this part of MCC’s study that have "Potentially Significant Impact"

b) Result in substantial soil erosion or the loss of topsoil? What are MCC’s plans on preserving the natural slopes, and not having the side of the SBNF slide down onto Hwy 18.

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on or off site landslide, lateral spreading, subsidence, liquefaction or collapse?

I don’t see where MCC has plans to stabilize the slopes when they do the blasting to get to the mining materials for their operation. It is well known that there are several earthquake faults with in the SBNF, and when MCC does their blasting what precautions will MCC take to not disturb these earthquake faults ultimately causing an earthquake.

VIII. HAZARDS AND HAZARDOUS MATERIALS - Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials,
substances, or waste within one-quarter mile of an existing or proposed school?
d) Be located on a site which is included on a list of hazardous materials sites compiled
pursuant to Government Code Section 65962.5 and, as a result, would it create a significant
hazard to the public or the environment?

e) For a project located within an airport land use plan or, where such a plan has not been
adopted, within two miles of a public airport or public use airport, would the project
result in a safety hazard for people residing or working in the project area?
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard
for people residing or working in the project area?

I read in this section that there will be NO "Potentially Significant Impact" due to hazardous
materials, and I have a hard time believing this, as there are many minerals that could be hiding
underneath the surface that will be let into the air during blasting, along with the potential of
harm to the local animals during blasting and the effects of the air pollution on the local plants
and animals. I see no plans on how MCC plans on keeping these hazardous materials under
control.

IX. HYDROLOGY AND WATER QUALITY,
b) Substantially deplete groundwater supplies or interfere substantially with groundwater
recharge such that there would be a net deficit in aquifer volume or a lowering of the
local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to
a level, which would not support existing land uses or planned uses for
which permits have been granted)?

As I read this section, MCC states that there will be no "Potentially Significant Impact" to the
local aqua firs located below the proposed expansion site, and I have to argue that point, that
when MCC does it’s blasting it will disturb the ground to a depth undetermined until the blasting
happens. There are any avenues for contaminated water to reach these lower aqua firs, and
what are the plans of MCC to monitor the lower aqua firs, also when the blasting is in operation
there will be debris sliding down hill, possible into the Cushenbury Creek, what are MCC’s plans
to prevent this from happening?

XI. MINERAL RESOURCES - Would the project:

a) Result in the loss of availability of a known mineral resource that would be of value to the
region and the residents of the state? This item is listed as "Less than Significant Impact",
there are many natural resources in that area that could be of interest to the local public, one
being fire wood gathering within the perimeter of the proposed expansion project along with
different minerals that are now and have been mined in the past.

XII. NOISE - Would the project result in:
a) Exposure of persons to or generation of noise levels in excess of standards established in the
local general plan or noise ordinance, or applicable standards of other agencies?

b) Exposure of persons to or generation of excessive ground borne vibration or ground borne
noise levels?

c) A substantial permanent increase in ambient noise levels in the project vicinity above
levels existing without the project?
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

These items are also listed as "Potentially Significant Impact", and I would like to know what MCC plans on reducing the impact of noise on the local community and also the wildlife in the area, especially the wildlife. This will also have effect on vehicle traffic driving up and down Hwy 18 from Big Bear to Lucerne Valley. The loud noise of blasting could be heard while driving and possibly cause an accident, and I see no plans of traffic monitoring in the proposed expansion area. This perimeter is within ½ mile of Hwy 18 to the east.

XV. RECREATION
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

According to this report, MCC states that there will be "No Impact" which I will debate as this is within the boundaries of the SBNF and there is or used to be access to the site via Forest road 3N02 all the way to the north overlooking Lucerne Valley with access to dispersed camping within the SBNF. It is apparent that the SFNF has accommodated MCC by placing a locked gate approximately 1/4 mile from the proposed expansion site. This also closes off access to several historical sites including the Mohawk Mine, although MCC states that the Mohawk Mine has NO significant historical value. I have been to the proposed site within the last 2 weeks walking it extensively and have found several mining claim stakes and several mines, and debris left over from those mines, they must have some historical importance to the SBNF, and I see no indication on how MCC plans for the public to have access to those historical sites in and around those sites, after all this is on PUBLIC LANDS and should stay that way.

As I read MCC's "Reclamation Plan" for this proposed project, and their ongoing mining at the east pit, I have attached a couple of pictures taken from directly above (exhibit 4&5) the east pit and another from the north east on top of Black Hawk mountain (exhibit 6) and I see now reclamation in progress as MCC states, so my question is what government agency will be monitoring the reclamation and how often will that monitoring take place to make sure MCC is living up to their responsibilities of the contract with the SBNF.

I am also including a picture of what is left after one of the mining projects within the perimeter of the proposed mining expansion.

Another question I have is, if this expansion is approved by the SBNF and the County of San Bernardino, there are thousands of pinyon trees within the perimeter of the proposed mining expansion, that could be harvested by either local fire wood gatherers, or by contract cutters, this would be another way for the SBNF to gain revenue, since there is little revenue in it for the SBNF.

In conclusion, it is of my opinion that MCC has not addressed all of the questions I have put forth on this comment paper, and for MCC to take over PUBLIC LANDS for profit is wrong in so many ways, disturbing the natural beauty of the SBNF which I volunteer on average 100 hours a month of my time to help preserve the natural beauty of this forest with the San Bernardino National Forest Association Off Highway Vehicle Volunteer Program and also as liaison for the So Cal Broncos SBNF Adopt-A-Trail Program, and also preserve it in it's natural state for generations to come, and to help all of the local animals and plant life that thrive within the SBNF.
I would like to thank you in advance for your consideration into getting more information concerning this proposed expansion project by the MCC and would like to be kept abreast of the upcoming EIR /EIS, and ask that the SBNF research this and hope that there is more concerns for the preservation of the SBNF for many generations to enjoy the way I do, as my family has been in the Big Bear Valley for over 35 years.

Danny F. Bogner

P.O. Box 1432
Sugarloaf, Ca
92386-1432
909-585-7497
Big Bear coordinator SBNFA OHV Volunteer program
Liaison for So Cal broncos Adopt-A-trail program
Shaw is cut lines of food to mahawk

Exhibit G
Date: April 6, 2012

To: Anne Surdzial, AICP
ECORP Consulting, Inc.
215 N. 5th Street
Redlands, CA 92374
asurdzial@ecorpconsulting.com

Subject: Comments on Mitsubishi Cement Corp South Quarry Project EIR/EIS Scoping

The Department of Fish and Game (Department) appreciates the opportunity to comment as part of the scoping process for the proposed Mitsubishi Cement Corp South Quarry expansion relative to impacts on biological resources, specifically on Nelson's bighorn sheep (Ovis canadensis nelsoni), a Fully Protected Mammal.

Potential impacts that should be addressed in an EIR/EIS include loss of a approximately 150 acres of habitat as a result of the removal of native vegetation and soil within the footprint of the quarry and haul road. The project area is used by bighorn sheep, mule deer (Odocoileus hemionus), and other native mammal and avian species for foraging, movement between habitats, bedding, escape terrain, and other important activities. Actions to prevent and mitigate losses to these important forage resources and habitat components should be addressed.

Disturbance to bighorn sheep should be addressed, as well as the potential loss of individuals to mortality related to blasting, vehicle collision, or other mining activities, or as a consequence of decreased access to forage. Procedures to minimize and avoid disturbance and loss of individuals should be evaluated. Consequences of loss of individuals should address population-level impacts to the persistence of this small population.
The addition of a haul road to the South Quarry is likely to impede movements by bighorn sheep across the roadway, due to steep road cuts. This may impact both within-range movements and limit potential immigration or emigration. Assessment should address the maintenance of connectivity across the haul road. The haul road may also facilitate access to disease threats from domestic sheep from lower elevations. Domestic sheep have been found on nearby Specialty Minerals property in recent years. Similarly, addition of a haul road may facilitate an increased threat of predation by domestic dogs that should be incorporated into evaluation.

In addition to the barrier to movement posed by the haul road, the quarry itself is a likely barrier to movement of bighorn sheep both for within-range movement and for immigration and emigration, and the consequences should be evaluated.

In addition to impacts to wildlife, limits to access by recreational hunters to the project area and adjacent Burnt Flats areas should be addressed.

I look forward to the opportunity to discuss these issues and provide comments on future environmental documents as part of the EIR/EIS process. The Department appreciates the cooperation of Mitsubishi Cement Corp in the past, and we look forward to continuing to work together to further the conservation of California's wildlife resources, and the habitats upon which they depend. Please contact me for any questions.

Jeff Villepique,
Environmental Scientist (Wildlife Biologist)
cell: 760-937-5966
April 6, 2012

Ms. Anne Surdzial, AICP
ECORP Consulting, Inc.
215 N. 5th Street
Redlands, CA 92374

Re: California Native Plant Society scoping comments regarding NOP of DEIR/DEIS for Mitsubishi Cement Company South Quarry

Ms. Surdzial:
The California Native Plant Society (CNPS), submits herein the following scoping comments to your office regarding the DEIR/DEIS for Mitsubishi Cement Company South Quarry.

The California Native Plant Society (CNPS) works to protect California’s native plant heritage and preserve it for future generations. We are a non-profit organization whose nearly 10,000 members work to promote native plant conservation through 33 chapters located statewide. We appreciate the opportunity to provide comments regarding this proposed mining project and its potential impact to important botanical resources.

The proposed project location is within the plan area for the Carbonate Habitat Management Strategy ((CHMS) April 2003). CNPS was a participant in the development of the CHMS, as was the project applicant and several other stakeholder groups and agencies.

The DEIR must assess and clearly indicate how the proposed project will address the goals and objectives detailed in the CHMS in order to ensure the Federally listed plant populations addressed in the plan remain viable and their management contributes to recovery of these taxa (Cushenbury buckwheat (Eriogonum ovalifolium var. vineum), Cushenbury milk-vetch (Astragalus albens), Cushenbury oxytheca (Acanthoscyphus (was Oxytheca) parishii var. goodmaniana), and Parish's daisy (Erigeron parishii).

In addition to the plants covered in the CHMS, other Federally listed and USFS sensitive plant species are known to occur in the proposed plan area. These include (but are not limited to):

Southern mountain buckwheat (Eriogonum kennedyi var. austromontanum)
Big Bear valley sandwort (Eremogone ursina)
San Bernardino Mountains dudleya (Dudleya abramsii ssp. affinis)
Parish's rock cress (Boechera parishii)
Additionally, other sensitive plant species could occur within the proposed project area. Current USFS botanical records, the most recent California Natural Diversity Database (CNDDB), and the California Consortium of Herbaria records should be reviewed for which plants have the potential to occur in the area. CNPS recommends that botanical surveys for rare and sensitive plant species and communities be conducted according to protocols detailed in the CA Department of Fish and Game's Protocols for Surveying and Evaluating Impacts to Special Status Native Plant Populations and Natural Communities (appended to this letter). Survey results should be listed, and potential impacts assessed and discussed along with appropriate avoidance, minimization, and/or mitigation measures in the DEIR.

Thank you for fully considering these scoping comments.

Sincerely,

Greg Suba
Conservation Program Director, CNPS
INTRODUCTION AND PURPOSE

The conservation of special status native plants and their habitats, as well as natural communities, is integral to maintaining biological diversity. The purpose of these protocols is to facilitate a consistent and systematic approach to the survey and assessment of special status native plants and natural communities so that reliable information is produced and the potential of locating a special status plant species or natural community is maximized. They may also help those who prepare and review environmental documents determine when a botanical survey is needed, how field surveys may be conducted, what information to include in a survey report, and what qualifications to consider for surveyors. The protocols may help avoid delays caused when inadequate biological information is provided during the environmental review process; assist lead, trustee and responsible reviewing agencies to make an informed decision regarding the direct, indirect, and cumulative effects of a proposed development, activity, or action on special status native plants and natural communities; meet California Environmental Quality Act (CEQA) requirements for adequate disclosure of potential impacts; and conserve public trust resources.

DEPARTMENT OF FISH AND GAME TRUSTEE AND RESPONSIBLE AGENCY MISSION

The mission of the Department of Fish and Game (DFG) is to manage California's diverse wildlife and native plant resources, and the habitats upon which they depend, for their ecological values and for their use and enjoyment by the public. DFG has jurisdiction over the conservation, protection, and management of wildlife, native plants, and habitat necessary to maintain biologically sustainable populations (Fish and Game Code §1802). DFG, as trustee agency under CEQA §15386, provides expertise in reviewing and commenting on environmental documents and makes protocols regarding potential negative impacts to those resources held in trust for the people of California.

Certain species are in danger of extinction because their habitats have been severely reduced in acreage, are threatened with destruction or adverse modification, or because of a combination of these and other factors. The California Endangered Species Act (CESA) provides additional protections for such species, including take prohibitions (Fish and Game Code §2050 et seq.). As a responsible agency, DFG has the authority to issue permits for the take of species listed under CESA if the take is incidental to an otherwise lawful activity; DFG has determined that the impacts of the take have been minimized and fully mitigated; and, the take would not jeopardize the continued existence of the species (Fish and Game Code §2081). Surveys are one of the preliminary steps to detect a listed or special status plant species or natural community that may be impacted significantly by a project.

DEFINITIONS

Botanical surveys provide information used to determine the potential environmental effects of proposed projects on all special status plants and natural communities as required by law (i.e., CEQA, CESA, and Federal Endangered Species Act (ESA)). Some key terms in this document appear in **bold font** for assistance in use of the document.

For the purposes of this document, **special status plants** include all plant species that meet one or more of the following criteria:

1. This document replaces the DFG document entitled “Guidelines for Assessing the Effects of Proposed Projects on Rare, Threatened and Endangered Plants and Natural Communities.”
2. http://ceres.ca.gov/ceqa/
Listed or proposed for listing as threatened or endangered under ESA or candidates for possible future listing as threatened or endangered under the ESA (50 CFR §17.12).

Listed or candidates for listing by the State of California as threatened or endangered under CESA (Fish and Game Code §2050 et seq.). A species, subspecies, or variety of plant is endangered when the prospects of its survival and reproduction in the wild are in immediate jeopardy from one or more causes, including loss of habitat, change in habitat, over-exploitation, predation, competition, disease, or other factors (Fish and Game Code §2062). A plant is threatened when it is likely to become endangered in the foreseeable future in the absence of special protection and management measures (Fish and Game Code §2067).

Listed as rare under the California Native Plant Protection Act (Fish and Game Code §1900 et seq.). A plant is rare when, although not presently threatened with extinction, the species, subspecies, or variety is found in such small numbers throughout its range that it may be endangered if its environment worsens (Fish and Game Code §1901).

Meet the definition of rare or endangered under CEQA §15380(b) and (d). Species that may meet the definition of rare or endangered include the following:

- Species considered by the California Native Plant Society (CNPS) to be "rare, threatened or endangered in California" (Lists 1A, 1B and 2);
- Species that may warrant consideration on the basis of local significance or recent biological information;
- Some species included on the California Natural Diversity Database’s (CNDDB) Special Plants, Bryophytes, and Lichens List (California Department of Fish and Game 2008).

Considered a locally significant species, that is, a species that is not rare from a statewide perspective but is rare or uncommon in a local context such as within a county or region (CEQA §15125 (c)) or is so designated in local or regional plans, policies, or ordinances (CEQA Guidelines, Appendix G). Examples include a species at the outer limits of its known range or a species occurring on an uncommon soil type.

Special status natural communities are communities that are of limited distribution statewide or within a county or region and are often vulnerable to environmental effects of projects. These communities may or may not contain special status species or their habitat. The most current version of the Department’s List of California Terrestrial Natural Communities indicates which natural communities are of special status given the current state of the California classification.

Most types of wetlands and riparian communities are considered special status natural communities due to their limited distribution in California. These natural communities often contain special status plants such as those described above. These protocols may be used in conjunction with protocols formulated by other agencies, for example, those developed by the U.S. Army Corps of Engineers to delineate jurisdictional wetlands or by the U.S. Fish and Wildlife Service to survey for the presence of special status plants.

4 Refer to current online published lists available at: http://www.dfg.ca.gov/biogeodata.

5 In general, CNPS List 3 plants (plants about which more information is needed) and List 4 plants (plants of limited distribution) may not warrant consideration under CEQA §15380. These plants may be included on special status plant lists such as those developed by counties where they would be addressed under CEQA §15380. List 3 plants may be analyzed under CEQA §15380 if sufficient information is available to assess potential impacts to such plants. Factors such as regional rarity vs. statewide rarity should be considered in determining whether cumulative impacts to a List 4 plant are significant even if individual project impacts are not. List 3 and 4 plants are also included in the California Natural Diversity Database’s (CNDDB) Special Plants, Bryophytes, and Lichens List. [Refer to the current online published list available at: http://www.dfg.ca.gov/biogeodata.] Data on Lists 3 and 4 plants should be submitted to CNDDB. Such data aids in determining or revising priority ranking.

6 Refer to current online published lists available at: http://www.dfg.ca.gov/biogeodata.

7 http://www.dfg.ca.gov/biogeodata/vegcamp/pdfs/natcomlist.pdf. The rare natural communities are asterisked on this list.

8 http://www.wetlands.com/regs/tlpg02e.htm

BOTANICAL SURVEYS

Conduct botanical surveys prior to the commencement of any activities that may modify vegetation, such as clearing, mowing, or ground-breaking activities. It is appropriate to conduct a botanical field survey when:

- Natural (or naturalized) vegetation occurs on the site, and it is unknown if special status plant species or natural communities occur on the site, and the project has the potential for direct or indirect effects on vegetation; or
- Special status plants or natural communities have historically been identified on the project site; or
- Special status plants or natural communities occur on sites with similar physical and biological properties as the project site.

SURVEY OBJECTIVES

Conduct field surveys in a manner which maximizes the likelihood of locating special status plant species or special status natural communities that may be present. Surveys should be floristic in nature, meaning that every plant taxon that occurs on site is identified to the taxonomic level necessary to determine rarity and listing status. “Focused surveys” that are limited to habitats known to support special status species or are restricted to lists of likely potential species are not considered floristic in nature and are not adequate to identify all plant taxa on site to the level necessary to determine rarity and listing status. Include a list of plants and natural communities detected on the site for each botanical survey conducted. More than one field visit may be necessary to adequately capture the floristic diversity of a site. An indication of the prevalence (estimated total numbers, percent cover, density, etc.) of the species and communities on the site is also useful to assess the significance of a particular population.

SURVEY PREPARATION

Before field surveys are conducted, compile relevant botanical information in the general project area to provide a regional context for the investigators. Consult the CNDDB\(^\text{10}\) and BIOS\(^\text{11}\) for known occurrences of special status plants and natural communities in the project area prior to field surveys. Generally, identify vegetation and habitat types potentially occurring in the project area based on biological and physical properties of the site and surrounding ecoregion\(^\text{12}\), unless a larger assessment area is appropriate. Then, develop a list of special status plants with the potential to occur within these vegetation types. This list can serve as a tool for the investigators and facilitate the use of reference sites; however, special status plants on site might not be limited to those on the list. Field surveys and subsequent reporting should be comprehensive and floristic in nature and not restricted to or focused only on this list. Include in the survey report the list of potential special status species and natural communities, and the list of references used to compile the background botanical information for the site.

SURVEY EXTENT

Surveys should be comprehensive over the entire site, including areas that will be directly or indirectly impacted by the project. Adjoining properties should also be surveyed where direct or indirect project effects, such as those from fuel modification or herbicide application, could potentially extend offsite. Pre-project surveys restricted to known CNDDB rare plant locations may not identify all special status plants and communities present and do not provide a sufficient level of information to determine potential impacts.

FIELD SURVEY METHOD

Conduct surveys using systematic field techniques in all habitats of the site to ensure thorough coverage of potential impact areas. The level of effort required per given area and habitat is dependent upon the vegetation and its overall diversity and structural complexity, which determines the distance at which plants can be identified. Conduct surveys by walking over the entire site to ensure thorough coverage, noting all plant taxa

\(^{10}\) Available at http://www.dfg.ca.gov/biogeodata/cnndb

\(^{11}\) http://www.bios.dfg.ca.gov/

observed. The level of effort should be sufficient to provide comprehensive reporting. For example, one person-hour per eight acres per survey date is needed for a comprehensive field survey in grassland with medium diversity and moderate terrain\(^\text{13}\), with additional time allocated for species identification.

TIMING AND NUMBER OF VISITS

Conduct surveys in the field at the time of year when species are both evident and identifiable. Usually this is during flowering or fruiting. Space visits throughout the growing season to accurately determine what plants exist on site. Many times this may involve multiple visits to the same site (e.g. in early, mid, and late-season for flowering plants) to capture the floristic diversity at a level necessary to determine if special status plants are present\(^\text{14}\). The timing and number of visits are determined by geographic location, the natural communities present, and the weather patterns of the year(s) in which the surveys are conducted.

REFERENCE SITES

When special status plants are known to occur in the type(s) of habitat present in the project area, observe reference sites (nearby accessible occurrences of the plants) to determine whether those species are identifiable at the time of the survey and to obtain a visual image of the target species, associated habitat, and associated natural community.

USE OF EXISTING SURVEYS

For some sites, floristic inventories or special status plant surveys may already exist. Additional surveys may be necessary for the following reasons:

- Surveys are not current\(^\text{15}\); or
- Surveys were conducted in natural systems that commonly experience year to year fluctuations such as periods of drought or flooding (e.g. vernal pool habitats or riverine systems); or
- Surveys are not comprehensive in nature; or fire history, land use, physical conditions of the site, or climatic conditions have changed since the last survey was conducted\(^\text{16}\); or
- Surveys were conducted in natural systems where special status plants may not be observed if an annual above ground phase is not visible (e.g. flowers from a bulb); or
- Changes in vegetation or species distribution may have occurred since the last survey was conducted, due to habitat alteration, fluctuations in species abundance and/or seed bank dynamics.

NEGATIVE SURVEYS

Adverse conditions may prevent investigators from determining the presence of, or accurately identifying, some species in potential habitat of target species. Disease, drought, predation, or herbivory may preclude the presence or identification of target species in any given year. Discuss such conditions in the report.

The failure to locate a known special status plant occurrence during one field season does not constitute evidence that this plant occurrence no longer exists at this location, particularly if adverse conditions are present. For example, surveys over a number of years may be necessary if the species is an annual plant having a persistent, long-lived seed bank and is known not to germinate every year. Visits to the site in more

\(^\text{15}\) Habitats, such as grasslands or desert plant communities that have annual and short-lived perennial plants as major floristic components may require yearly surveys to accurately document baseline conditions for purposes of impact assessment. In forested areas, however, surveys at intervals of five years may adequately represent current conditions. For forested areas, refer to “Guidelines for Conservation of Sensitive Plant Resources Within the Timber Harvest Review Process and During Timber Harvesting Operations”, available at https://r1.dfg.ca.gov/portal/Portals/12/THPBotanicalGuidelinesJuly2005.pdf

than one year increase the likelihood of detection of a special status plant especially if conditions change. To further substantiate negative findings for a known occurrence, a visit to a nearby reference site may ensure that the timing of the survey was appropriate.

REPORTING AND DATA COLLECTION

Adequate information about special status plants and natural communities present in a project area will enable reviewing agencies and the public to effectively assess potential impacts to special status plants or natural communities and will guide the development of minimization and mitigation measures. The next section describes necessary information to assess impacts. For comprehensive, systematic surveys where no special status species or natural communities were found, reporting and data collection responsibilities for investigators remain as described below, excluding specific occurrence information.

SPECIAL STATUS PLANT OR NATURAL COMMUNITY OBSERVATIONS

Record the following information for locations of each special status plant or natural community detected during a field survey of a project site.

- A detailed map (1:24,000 or larger) showing locations and boundaries of each special status species occurrence or natural community found as related to the proposed project. Mark occurrences and boundaries as accurately as possible. Locations documented by use of global positioning system (GPS) coordinates must include the datum in which they were collected;
- The site-specific characteristics of occurrences, such as associated species, habitat and microhabitat, structure of vegetation, topographic features, soil type, texture, and soil parent material. If the species is associated with a wetland, provide a description of the direction of flow and integrity of surface or subsurface hydrology and adjacent off-site hydrological influences as appropriate;
- The number of individuals in each special status plant population as counted (if population is small) or estimated (if population is large);
- If applicable, information about the percentage of individuals in each life stage such as seedlings vs. reproductive individuals;
- The number of individuals of the species per unit area, identifying areas of relatively high, medium and low density of the species over the project site; and
- Digital images of the target species and representative habitats to support information and descriptions.

FIELD SURVEY FORMS

When a special status plant or natural community is located, complete and submit to the CNDDB a California Native Species (or Community) Field Survey Form or equivalent written report, accompanied by a copy of the relevant portion of a 7.5 minute topographic map with the occurrence mapped. Present locations documented by use of GPS coordinates in map and digital form. Data submitted in digital form must include the datum in which it was collected. If a potentially undescribed special status natural community is found on the site, document it with a Rapid Assessment or Relevé form and submit it with the CNDDB form.

VOUCHER COLLECTION

Voucher specimens provide verifiable documentation of species presence and identification as well as a public record of conditions. This information is vital to all conservation efforts. Collection of voucher specimens should

18 NAD83, NAD27 or WGS84

19 http://www.dfg.ca.gov/biogeodata

20 NAD83, NAD27 or WGS84

be conducted in a manner that is consistent with conservation ethics, and is in accordance with applicable state and federal permit requirements (e.g. incidental take permit, scientific collection permit). Voucher collections of special status species (or suspected special status species) should be made only when such actions would not jeopardize the continued existence of the population or species.

Deposit voucher specimens with an indexed regional herbarium\(^{22}\) no later than 60 days after the collections have been made. Digital imagery can be used to supplement plant identification and document habitat. Record all relevant permittee names and permit numbers on specimen labels. A collecting permit is required prior to the collection of State-listed plant species\(^{23}\).

BOTANICAL SURVEY REPORTS

Include reports of botanical field surveys containing the following information with project environmental documents:

- **Project and site description**
 - A description of the proposed project;
 - A detailed map of the project location and study area that identifies topographic and landscape features and includes a north arrow and bar scale; and,
 - A written description of the biological setting, including vegetation\(^{24}\) and structure of the vegetation; geological and hydrological characteristics; and land use or management history.

- **Detailed description of survey methodology and results**
 - Dates of field surveys (indicating which areas were surveyed on which dates), name of field investigator(s), and total person-hours spent on field surveys;
 - A discussion of how the timing of the surveys affects the comprehensiveness of the survey;
 - A list of potential special status species or natural communities;
 - A description of the area surveyed relative to the project area;
 - References cited, persons contacted, and herbaria visited;
 - Description of reference site(s), if visited, and phenological development of special status plant(s);
 - A list of all taxa occurring on the project site. Identify plants to the taxonomic level necessary to determine whether or not they are a special status species;
 - Any use of existing surveys and a discussion of applicability to this project;
 - A discussion of the potential for a false negative survey;
 - Provide detailed data and maps for all special plants detected. Information specified above under the headings “Special Status Plant or Natural Community Observations,” and “Field Survey Forms,” should be provided for locations of each special status plant detected;
 - Copies of all California Native Species Field Survey Forms or Natural Community Field Survey Forms should be sent to the CNDDB and included in the environmental document as an Appendix. It is not necessary to submit entire environmental documents to the CNDDB; and,
 - The location of voucher specimens, if collected.

\(^{23}\) Refer to current online published lists available at: http://www.dfg.ca.gov/biogeodata.

\(^{24}\) A vegetation map that uses the National Vegetation Classification System (http://biology.usgs.gov/npsveg/nvcs.html), for example A Manual of California Vegetation, and highlights any special status natural communities. If another vegetation classification system is used, the report should reference the system, provide the reason for its use, and provide a crosswalk to the National Vegetation Classification System.
• **Assessment of potential impacts**
 - A discussion of the significance of special status plant populations in the project area considering nearby populations and total species distribution;
 - A discussion of the significance of special status natural communities in the project area considering nearby occurrences and natural community distribution;
 - A discussion of direct, indirect, and cumulative impacts to the plants and natural communities;
 - A discussion of threats, including those from invasive species, to the plants and natural communities;
 - A discussion of the degree of impact, if any, of the proposed project on unoccupied, potential habitat of the species;
 - A discussion of the immediacy of potential impacts; and,
 - Recommended measures to avoid, minimize, or mitigate impacts.

QUALIFICATIONS

Botanical consultants should possess the following qualifications:

- Knowledge of plant taxonomy and natural community ecology;
- Familiarity with the plants of the area, including special status species;
- Familiarity with natural communities of the area, including special status natural communities;
- Experience conducting floristic field surveys or experience with floristic surveys conducted under the direction of an experienced surveyor;
- Familiarity with the appropriate state and federal statutes related to plants and plant collecting; and,
- Experience with analyzing impacts of development on native plant species and natural communities.

SUGGESTED REFERENCES

California Natural Diversity Database. Most recent version. Special vascular plants, bryophytes and lichens list. Updated quarterly. Available at www.dfg.ca.gov.

Carbonate Habitat Management Strategy

April 29, 2003

Flowers of the plant species addressed by this strategy, from left to right: Cushenbury buckwheat (*Eriogonum ovalifolium* var. *vineum*), Cushenbury milk-vetch (*Astragalus albens*), Cushenbury oxytheca (*Oxytheca parishii* var. *goodmaniana*), Parish’s daisy (*Erigeron parishii*)

Prepared by Todd G. Olson for
San Bernardino National Forest Association
Maps were prepared by the San Bernardino National Forest.

Additional technical assistance was provided by the USDA Forest Service, the USDI Bureau of Land Management, and the U.S. Fish and Wildlife Service.

Plant illustrations are by Fred M. Roberts, Jr., and plant photographs are by Scott Eliason, all used with permission.

The following organizations and their representatives actively participated in the working group that developed this strategy (listed alphabetically): BLM California Desert District; Butterfield family; California Native Plant Society; County of San Bernardino; Cushenbury Mine Trust; Gresham, Savage, Nolan & Tilden, LLP; McKay & McKay; Mitsubishi Cement Corporation; OMYA California Inc.; San Bernardino National Forest; Sentinel Mining; Specialty Minerals Inc.; United States Fish and Wildlife Service; White & Leatherman BioServices.
Carbonate Habitat Management Strategy

Contents

Part I: Introduction
1. Background 4
2. Objectives 6
3. Scope 8
4. Strategy Overview 9

Part II: Components
5. Land Use Categories 15
6. Administrative Units 17
7. Conservation Value 17
8. Conservation Tools 20

Part III: Implementation
9. Reserve Formation 23
10. Conservation Credits 26
11. ESA Compliance 29
12. Revegetation 31

Part IV: Administration
13. Parties and Responsibilities 33
14. Monitoring 35
15. Funding 37
16. Legislation 38
17. Amendment 39

Appendices
A. Glossary of Terms 43
B. Species Accounts 47
C. Habitat Definitions 63
D. Habitat Statistics 65
E. Guidelines and Success Criteria for Revegetation and Carbonate Plant Introductions 67
F. Conservation Credit Worksheets 75
G. Edge Effect Examples 79
H. Credit Registration 85
I. Maps 89
On August 24, 1994, five plants that are associated with the carbonate geology of the northeastern San Bernardino Mountains and adjacent Lucerne Valley were listed as threatened or endangered under the federal Endangered Species Act of 1973, as amended (the “ESA”). Four of these plants occur on commercially valuable limestone deposits. The public interest in protecting these plant species is thus in conflict with the public and private interest in mining the coincident limestone deposits.

This Carbonate Habitat Management Strategy (the “CHMS,” referring both to this document and the program it describes) is the product of years of effort by interested mining companies, claim holders, landowners, conservation interests, and government agencies to develop a strategy to resolve this conflict in a mutually-agreeable manner with an approach that can also be utilized by other parties in the future on a voluntary basis.

1. Background

From the 1950s, various claim holders and mining companies have been extracting limestone from the northeastern San Bernardino mountains. In recent years, annual production has been running at about three million tons of cement-grade limestone, at a value of about $100 million, and 1.5 million tons of high-brightness limestone, at a value of about $75 million. Much of this mining activity is occurring on mining claims established under the Mining Law of 1872, as amended (the “Mining Law”) on federal land under the jurisdiction of the U. S. Department of Agriculture Forest Service (the “Forest Service”) or the U. S. Department of Interior Bureau of Land Management (the “BLM”). Collectively, the Forest Service and the BLM shall be referred to as the “Resource Management Agencies,” each with respect to land under its jurisdiction. A portion of the mining activity also occurs on privately-owned land under the jurisdiction of the County of San Bernardino (the “County”).

In 1994, the four plant species shown in the box on this page (the “Carbonate Plants”) were listed under the ESA. Each of these species occurs only in the vicinity of the northeastern San Bernardino mountains, and each occurs almost exclusively on carbonate soils that often coincide with economically valuable limestone deposits. (A fifth carbonate plant species, the San Bernardino Mountains bladderpod, Lesquerella kingii var. bernardina, was listed as endangered at the same time that the other four were listed, but the bladderpod does not coincide with economically valuable limestone deposits, so it is not addressed by the CHMS.)

Carbonate Plants

- Cushenbury buckwheat (*Eriogonum ovalifolium* var. *vineum*) (federal endangered)
- Cushenbury milk-vetch (*Astragalus albens*) (federal endangered)
- Cushenbury oxytheca (*Oxytheca parishii* var. *goodmaniana*) (federal endangered)
- Parish’s daisy (*Erigeron parishii*) (federal threatened)
Absent a regional strategy for the preservation of the Carbonate Plants, ongoing limestone mining activities could come into direct conflict with the ESA. Map 1 and Map 2 in Appendix I illustrate the potential conflict by showing the locations of the carbonate soils, the Carbonate Plants, existing mining claims, and existing mining activity. Being aware of this situation, certain mining interests, conservation interests, and government agencies (collectively, the “Working Group”) began to develop the CHMS in October 1999 to resolve this potential conflict. For purposes of planning and analysis, the Working Group identified an area of approximately 160,000 acres in the northeast San Bernardino Mountains, which encompasses nearly all of the habitat for the Carbonate Plants, as the Carbonate Habitat Management Area (the “CHMA”; see Figure 1). The CHMA is characterized by substantial limestone deposits and encompasses nearly the entire known geographic range of the Carbonate Plants (except one occurrence of Parish’s daisy habitat near Pioneertown, approximately ten miles east of the CHMA boundary). The majority of the CHMA is within the San Bernardino National Forest (the “SBNF”), but large and important portions occur on federal lands managed by the BLM and on private lands.

The CHMS, as set forth in this document, is the culmination of the efforts of the Working Group. It provides a means for forming a reserve system for the Carbonate Plants (the “Habitat Reserve” or the “Reserve”) while allowing mining activities to proceed under a streamlined and expedited ESA compliance process. The CHMS is voluntary as to private mining interests; it imposes no regulatory burden on existing claims or privately owned property, but it provides a clear recipe for ESA compliance for those who desire to avail themselves of it. Mining interests remain free to seek any required ESA compliance without utilizing or complying with the CHMS. Governmental authorities may also use the CHMS as a framework for establishing land use regulations or policies within the CHMA but, except for any commitments made by the Resource Management Agencies in consultation with the United States Fish and Wildlife Service (the “USFWS”), they are not required to do so.

The time scale over which limestone reserves are mined is measured in decades. In order to be useful, the CHMS is intended to be operational for fifty years or more, and the Habitat Reserve is intended to be in place in perpetuity. Although the CHMS is subject to amendment over time in accordance with its terms (see Section 17(b)), it has no established date of termination.

The following section describes the objectives of the CHMS in some detail.

2. Objectives

The goals of the CHMS are to facilitate economic limestone mining activity while conserving the Carbonate Plants under a sensible and efficient regulatory regime. Each of these three goals may be regarded as in the public interest, though different members of the public will have different degrees of interest in each of them. The specific objectives of the CHMS can be categorized by the three types of goals: economic, conservation, and regulatory.
Section 2 • Objectives

(a) Economic objectives. The economic objectives of the CHMS are as follows:

(i) To increase the regulatory certainty that the most valuable mineral deposits within the CHMA may be mined in the future.

(ii) To protect the availability of limestone resources that are vital to the construction industry in the southwestern region of the United States.

(iii) To protect the viability of the mining-based economy of the northeastern San Bernardino Mountains and Lucerne Valley region.

(iv) To provide a definitive, streamlined process for future mining activities within the CHMA to comply with ESA regulation of the Carbonate Plants.

(v) To provide a framework for streamlining National Environmental Policy Act (“NEPA”) requirements for future mining activities. Such streamlining would not be available unless and until the CHMS is incorporated into future land use plans for lands managed by the Resource Management Agencies within the CHMA (“Federal Land Plans”).

(vi) To reduce the costs and time associated with County processing of mining-related land use applications by providing a comprehensive approach to addressing impacts to the Carbonate Plants under the California Environmental Quality Act (“CEQA”).

(b) Conservation objectives. The conservation objectives of the CHMS are as follows:

(i) To maintain and manage the geomorphic and ecological processes of the landscape in large, well-placed blocks of habitat where the Carbonate Plants are found within the CHMA such that the Carbonate Plants are likely to persist indefinitely.

(ii) To avoid “jeopardy” to the continued existence of the Carbonate Plants (as defined in Section 7 of the ESA and its regulations).

(iii) To avoid “destruction or adverse modification” of critical habitat for the Carbonate Plants (as defined in Section 7 of the ESA and its regulations).

(iv) To contribute to the recovery and ultimate de-listing of the Carbonate Plants under the ESA.

(v) To help avoid the need for future ESA listings of species that occur within the CHMA.

(vi) If other species that occur within the CHMA are listed under the ESA in the future, to avoid jeopardizing the recovery of those species (as defined in Section 7 of the ESA and its regulations).

(vii) To provide a mechanism for tracking both the loss and conservation of habitat for the Carbonate Plants over time.

(c) Regulatory objectives. The regulatory objectives of the CHMS are as follows:

(i) To streamline the application of the ESA to mining activities within the CHMA.

(ii) To provide a biological basis for addressing the Carbonate Plants in future Federal Land Plans.

(iii) To streamline the County’s CEQA review of the biological impacts of mining projects on private land within the CHMS.

(iv) To streamline the County’s implementation of the California Surface Mining and Reclamation Act of 1975, as amended (“SMARA”) within the CHMA.

(v) To provide a means for the BLM to comply with certain stipulations in Center for Biological Diversity vs. BLM, Case No. C-00-0927 WHA (JCS) in the United States District Court, Northern District of California, San Francisco Division.

(vi) To provide a means for the Forest Service to comply with certain stipulations in Southwest Center for Biological Diversity vs. Sprague, Case No. C 98-2434 SC in the United States District Court, Northern District of California.

The CHMS attempts to provide an integrated approach to reconciling and achieving the economic, conservation, and regulatory objectives listed above.
The following section develops the strategy further by describing the scope of the CHMS.

3. Scope

The scope of the CHMS can be described in terms of the regulated activities that it addresses, the governmental regulations that it addresses, the biological species that it addresses, and the geographical plan area within which it applies.

CHMS Scope Summary
- **Activities:** covers mining activities
- **Regulation:** offers compliance with the ESA and potential streamlining under NEPA, SMARA, County land use regulations, and related CEQA requirements
- **Species:** addresses the four Carbonate Plants
- **Plan area:** applies within the CHMA

(a) **Activities.** The CHMS provides a procedure for surface and subsurface mining activities (the “Covered Activities”) to comply with certain environmental regulations (see subsection (b) below). All activities that are incidental to mining activities are included as Covered Activities, including, without limitation, (i) exploration, (ii) overburden removal, (iii) extraction, (iv) keeping of waste piles, (v) reclamation, (vi) milling and other processing of extracted material, (vii) transportation of extracted material, and (viii) construction of facilities and infrastructure related to the above activities.

(b) **Regulations.** The regulatory framework for the CHMS is summarized in the box to the right. The regulations addressed by the CHMS are as follows:

(i) **ESA.** The primary regulatory focus of the CHMS is to provide mining interests with a means of obtaining compliance with the ESA (“ESA Compliance”; see Section 11) for Covered Activities with respect to the Carbonate Plants and any other species addressed by the CHMS in the future (see subsection (c) below). More specifically, the CHMS is intended to be attached to a biological assessment as the basis for a consultation between the Resource Management Agencies and the USFWS under Section 7 of the ESA (the “CHMS Section 7 Consultation”). The biological assessment required by Section 7 of the ESA shall be prepared by the Forest Service in cooperation with the BLM for submission to the USFWS. It is intended that on the strength of the CHMS, the USFWS will be able to issue a programmatic biological opinion (the “CHMS Biological Opinion”) that will authorize activities on federal land that comply with the CHMS as being in compliance with the ESA, even if such activities result in the loss of species or habitat addressed by the CHMS. Because it will be mining interests who provide compensation under the CHMS and who are the ultimate beneficiaries of ESA Compliance under the CHMS, this document refers to the mining interests as the parties who “obtain” ESA Compliance, even though it is actually the Resource Management Agencies who are complying with the ESA by means of the CHMS. The CHMS Biological Opinion shall specifically address any of the “Initial Furnace Transactions” (defined in Section 9(d) below) that require ESA Compliance and that have been well-defined by the time that a biological assessment is submitted to the USFWS. Activities that receive ESA Compliance through the CHMS shall not be required to undergo a separate consultation with the USFWS under Section 7 of the ESA.

(ii) **NEPA.** No NEPA analysis will be performed on the CHMS directly because the CHMS involves no present “federal decision,” as defined under NEPA. However, the CHMS may indirectly facilitate regulatory streamlining under NEPA. By providing a strategy for addressing impacts to the Carbonate Plants and
their habitats, future Federal Land Plans may be able to incorporate the CHMS into their NEPA compliance strategy such that project compliance with the CHMS satisfies certain project-level requirements of NEPA. Then, the NEPA compliance documents for individual projects could address impacts to those species by cross-referencing the applicable Federal Land Plan and its associated NEPA documentation. The availability of such streamlining under NEPA is not automatic; it will depend upon how the Resource Management Agencies write their Federal Land Plans and associated NEPA documentation.

(iii) County land use regulations and implementation of SMARA. The County is the land use jurisdiction for mining activities on private land within the CHMA. It also administers SMARA within the CHMA. The County shall adopt standardized conditions of approval that are consistent with the CHMS to potentially streamline the processing of mining and reclamation applications (and the associated CEQA review) that it administers. See Section 13(c) for a more detailed description of the County’s commitments under the CHMS.

(c) Species. Initially, the CHMS directly addresses only the Carbonate Plants and their habitats, so ESA Compliance is only with respect to those four species. The CHMS provides a process, however, for applying to the USFWS to have the CHMS address additional species that may be proposed for listing or listed under the ESA in the future (see Section 17(c)). In the event that such additional species become addressed by the CHMS, ESA Compliance will be regarded as addressing such additional species as well.

(d) Plan area. The CHMS applies only to Covered Activities that occur within the CHMA. See paragraph 3 of Section 1 for a description of the CHMA.

A Covered Activity within the CHMA may, but is not required to, utilize the CHMS to obtain ESA Compliance and other regulatory streamlining that may be offered by the Resource Management Agencies or the County through the CHMS in the future.

4. Strategy Overview

The CHMS is essentially a strategy for streamlining ESA compliance for mining activities and building a reserve for the Carbonate Plants over time that is designed to provide for their long-term survival and recovery. This section summarizes this strategy, which is described in much greater detail in the balance of this document. This section is not intended to summarize the overall document, but rather to highlight how the CHMS is designed to meet the competing interests of the mining industry and conservation of the Carbonate Plants. For more detailed descriptions of the concepts summarized in this section, see the sections cross-referenced in this section. In the event of a conflict between the summary information provided in this section and the more detailed provisions of the following sections, the latter shall control.

(a) Meeting competing objectives. The CHMS attempts to meet its competing economic, conservation, and regulatory objectives by improving the prospects of achieving each of the three types of objective. The key pieces of the strategy, as depicted in Figure 2, are
that (i) mining interests will make contributions to the reserve and obtain increased regulatory certainty and permit streamlining (see Sections 8(c), 11), (ii) the Resource Management Agencies will make contributions to the reserve (see Sections 8(a)–(b), (e)) and obtain the streamlining of their compliance process under Section 7 of the ESA (see Section 11), as well as the means to resolve litigation against them, and (iii) the USFWS will issue a favorable CHMS Biological Opinion (see Section 3(b)(i)) and obtain increased certainty that a Habitat Reserve will be achieved that meets the survival and recovery needs of the Carbonate Plants (see Section 9).

Currently within the CHMA, some land is being mined and a limited amount of land has been set aside for permanent conservation, but most of the land is neither being mined nor is dedicated to conservation (see Map 1 and Map 2 in Appendix I). The CHMS will, in an orderly fashion, allow certain lands to be added to the mining category so long as a sufficient amount of land is being contributed to the Habitat Reserve for permanent conservation (see Sections 8(c), 11). To provide a means of tracking these different land uses over time, the CHMS uses the land category designations shown in the box below, which are grouped based upon whether they are mining uses, conservation uses, or not yet committed to any particular use (see Section 5).

Over time, some of the uncommitted category lands (D, P, and X) will be systematically converted to the mining categories (M1, M2, and F), on the one hand, and to the Habitat Reserve (E), on the other hand. This progression is depicted in Figure 3. The following subsections explain in more detail how this will occur.

(b) Conservation toolbox. A number of different tools are available to build the Habitat Reserve and achieve the objectives of the CHMS, as listed in the “toolbox” shown on page 12 and described in detail in Section 8. The CHMS provides the mechanisms needed to coordinate the use of many different conservation tools. One key mechanism provided under the CHMS is a method of measuring Conservation Value for the Carbonate Plants in terms of “Conservation Units” (see Section 7(a)). The Conservation Value of any parcel of land can be measured in terms of Conservation Units using only a geographical information system (“GIS”) database developed by the Forest Service and without the need for new field surveys (Section 7(b)–(f)). Conservation Units provide the CHMS with a common way to measure both conservation and loss of habitat values, facilitating the use of various conservation tools in many different combinations.

The CHMS takes the further step of creating a Conservation Value commodity known as “Conservation Credits” (Section 7(a)). Any landowner or claim holder within the CHMA may contribute land or claims to the Habitat Reserve and receive Conserva-
The Streamlined ESA Compliance Process

1. Calculate the number of Conservation Credits required to obtain ESA Compliance for the project (3 × the Conservation Value of the land to be mined).

2. Obtain the required Conservation Credits by making Reserve Contributions or by purchasing Conservation Credits from another party.

3. Submit the required Conservation Credits and sign the CHMS Memorandum of Understanding.

The Forest Service processes the paperwork and issues a concurrence letter to the applicant which serves as evidence that the project has satisfied the requirements of the ESA for the Carbonate Plants (see Section 10 introduction and (b)–(c)).

Those Conservation Credits may be used to obtain ESA Compliance (see subsection (c) below and Sections 10(a) and 11) or “banked,” that is, held for future use or sale to another private party (Sections 8(d) and 10(a)). Figure 4 on page 12 depicts the creation and use of Conservation Credits. The Forest Service will administer the processes of (i) giving private parties Conservation Credits for making Reserve Contributions; (ii) processing applications for ESA Compliance; and (iii) tracking the ownership and transfer of Conservation Credits (see Section 10(f)).

(c) Permit streamlining. The primary benefit to mining interests under the CHMS is that their ESA Compliance requirements are easy to determine, and the ESA Compliance process is streamlined, simple, and quick (see Section 11). A party wishing to obtain ESA Compliance undertakes a three-step process, as shown in the box below.

The CHMA is divided into five “Administrative Units” (see Section 6; also referred to as simply a “Unit”). As soon as certain conservation objectives are satisfied within a Unit (see subsection (d)(ii) below and Section 9(b)(i)), mining projects within that Unit may use the process described above to obtain ESA Compliance.

(d) Conservation measures. The permit streamlining described above is possible under the ESA because of the CHMS’s provision of the Habitat Reserve as a means of conserving large, well-placed blocks of high-quality habitat for the Carbonate Plants in perpetuity (see Section 9). The coordinated implementation of the CHMS can provide a much more cohesive and significant reserve for these species than would occur in the absence of such a coordinated conservation strategy.

Definitions

“Conservation Value” means the value of land for the conservation of the Carbonate Plants, as measured in “Conservation Units” (see Section 7 introduction and Section 7(a)).

“Reserve Contribution” means a contribution to the Habitat Reserve in the form of either (i) granting privately owned land, (ii) relinquishing a mining claim, (iii) restricting a mining claim or privately owned land for conservation purposes subject to later redemption by offering equivalent Conservation Value in another form, or (iv) granting or relinquishing the surface rights of privately-owned land or a mining claim while retaining the right to conduct subsurface mining (see Section 10(b)).
though initially somewhat fragmented, the Initial Habitat Reserve provides a core conservation area across the entire CHMA from the very outset.

(ii) Stage 1 Priority Areas. No loss of habitat for Carbonate Plants may occur under the CHMS within any Administrative Unit until most of the valuable Carbonate Plant habitat in the “Stage 1 Priority Areas” within such Unit (see Map 3 in Appendix I) has been added to the Habitat Reserve (see Section 9(b)(i)). Such habitat in the Stage 1 Priority Areas plus the portion of the Initial Habitat Reserve within each Unit provide a solid base of conservation within each Administrative Unit that must be part of the Reserve before any loss of Carbonate Plants can occur within that Unit under the CHMS.

(iii) Furnace Unit Stage 1 Priority Areas. Much preliminary work has been done so that the Furnace Unit Stage 1 Priority Areas can be added to the Reserve as soon after the adoption of the CHMS as possible. Specifically, a series of transactions that utilizes nearly the entire “toolbox” of conservation tools is being assembled (Section 9(d)). Map 6 in Appendix I shows how the Habitat Reserve may be configured if all such transactions were to occur. These transactions will be prepared to close simultaneously after adoption of the CHMS and upon the closing of any federal land exchanges or purchases necessary to complete the transactions. Federal legislation may be sought to give the Resource Management Agencies authority to complete land transactions on an expedited basis (see Section 16).

(iv) Stage 2 Priority Areas. The Stage 2 Priority Areas shown on Map 3 in Appendix I are also targeted for addition to the Habitat Reserve utilizing the “toolbox” described above (see Section 9(b)(ii)). No loss of habitat for Carbonate Plants may occur under the CHMS at any time within any Stage 2 Priority Area. Furthermore, the CHMS provides incentives for land within Stage 2 Priority Areas to be added to the Reserve (see Section 9(b)(iii)).

The Initial Habitat Reserve and the Stage 1 and Stage 2 Priority Areas together form the basis for securing a core of Habitat Reserve within each Administrative Unit. Figure 5 shows the percentage of the Conservation Value in each of these categories by Unit, and Table 5 on page 24 provides more detailed data on...
these categories. Note, however, that the CHMS does not prevent private parties from seeking compliance with the ESA apart from the CHMS in any portion of the CHMA, including within Priority Areas. Initially, only the Initial Habitat Reserve areas are completely protected from mining activity.

(v) **Compensation Ratio.** A “Compensation Ratio” of 3:1 is required for any loss of Carbonate Plant habitat that is allowed under the CHMS (see Section 11(a)). This ratio is measured in terms of Conservation Value. Before a mining activity can be allowed under the CHMS, the applicant must add land worth 3 units of Conservation Value to the Habitat Reserve for each unit of Conservation Value to be lost to the proposed mining activity. Adjustments are made to the Conservation Value calculations to encourage both reserve formation and mining in compact formations with a minimum of perimeter (see Section 7(e)). Also, compensation must be provided in advance of the loss of habitat, so preservation of habitat will necessarily stay ahead of loss of habitat at a minimum of a 3:1 ratio under the CHMS (as measured in Conservation Value). Within each Unit, a substantial portion of such project compensation may initially occur in the Priority Areas.

(vi) **Federal land contributions.** Federal land contributions made to the Habitat Reserve are in addition to project compensation that occurs under the CHMS (see Section 8(a)–(b), (e)–(f)). All federal land exchanges and purchases that add to the Habitat Reserve therefore increase the ratio of preservation to habitat loss to be in excess of 3:1. Major initial acquisitions of rich habitat for Carbonate Plants are targeted under the CHMS, (primarily in the Furnace Unit Priority Areas), which would add significant value to the Reserve.

(vii) **Private land contributions.** There is currently no federal protection of plant species listed under the ESA that occur on privately-owned lands. The CHMS provides incentives for the contribution of private land with high Conservation Value to the Habitat Reserve, thus providing permanent protection of habitat for Carbonate Plants on lands that are not currently subject to the ESA.

The following parts provide a complete description of all of the matters introduced in this overview section. 🌿
II. Components

The CHMS is built on a framework of four key components: Land use categories are established for purposes of tracking the status of land within the CHMA as committed for mining activities, committed for conservation, or uncommitted. Administrative Units have been identified as logical administrative subareas within the CHMA. A method is established for measuring Conservation Value for the Carbonate Plants. Finally, conservation tools are set forth as the various means by which the Reserve Criteria can be satisfied. The four sections of this Part II provide a detailed description of each of these four components.

5. Land Use Categories

All land within the CHMA is classified into seven land use categories, which are described in this section and summarized in the box on page 16. The CHMS is fundamentally a matter of shifting lands of relatively high mineral value into categories that permit mining activities and shifting other lands of relatively high Conservation Value into the Habitat Reserve. The land use categories are established to provide a means of describing and tracking the shifting of land uses over time.

Two key points are critical to understanding the land use categories. First, because the CHMS is a voluntary program, the land use categories do not affect the rights of landowners or claims holders on land that has not been voluntarily subjected to the CHMS. Second, the categorization of land is dynamic; it will change over time. Only lands in “Category E,” the conservation category (see subsection (b) below), cannot change once they are in that category, as Category E represents land permanently set aside as part of the Habitat Reserve.

Map 3 in Appendix I shows the expected status of land categories within the CHMA at the commencement of CHMS implementation. The progression of lands through the mining cycle is depicted in Figure 6; and the various categories are described in detail in the following paragraphs.

(a) Mining Category lands. The following three land use categories are mining-related categories; lands in these categories may be referred to as “Mining Category” lands.

(i) Category M1: Fully Permitted. This category represents land that either (a) has been mined in the past and has not yet been reclaimed (including receiving approval and release for completed reclamation); or (b) has been approved under a Mining Plan (as defined in this subsection). Once a Category M1 parcel has been successfully reclaimed in accordance with its Mining Plan, the parcel reverts to Category D or Category P (see subsection (c) below) and can be re-categorized again in the future. The Conservation Value associated with such a reclaimed parcel is not changed automatically, but may be changed by changing the “Habitat Inventory” in accordance with Section 14(d). A “Mining Plan” is defined as a mining plan of operations (in the case of a claim on federal land) or a mining and reclamation plan (in the case of mining on private land).
Land Use Categories Summary

Mining Categories:

M1: Fully Permitted
Land that either (i) has been approved under a Mining Plan or (ii) is currently impacted by mining activity.

M2: CHMS Compliant
Land with ESA Compliance under the CHMS, but no Mining Plan.

F: Auxiliary Use
Federal lands made available to private mining operations for uses that are auxiliary to mining activities, such as haul roads, utility corridors, and water wells; little land will be in this category.

Conservation Category:

E: Established Reserve
Land permanently committed to the Habitat Reserve.

Uncommitted Categories:

D: Default
All federal land not otherwise designated; includes any claimed federal land contributed as a “Relocatable Contribution.”

P: Private
Privately-owned land that has not been categorized as M1, M2, or E; includes any private land contributed as a “Relocatable Contribution.”

X: Transfer
Federal lands having little or no habitat value for the Carbonate Plants that have been designated for transfer out of federal ownership.

(b) Conservation Category lands.

The following land use category is for land committed to conservation; lands in this category may be referred to as “Conservation Category” lands:

Category E: Established Reserve.
This category includes all land that has been permanently committed to the Habitat Reserve. Land in this category cannot be changed to any other category. Category E includes some private land within the CHMA that was under permanent conservation easement at the commencement of the CHMS. The methods of protecting additions to Category E lands are described in Section 9(f).

(c) Uncommitted Category lands.

The following three land use categories are not committed to either mining activities or the Habitat Reserve; lands in these categories may be referred to as “Uncommitted Category” lands.

(i) Category D: Federal Default.
This category is the default category and includes all federal lands within the CHMA that are not otherwise designated. Category D land can become Category M2 by obtaining ESA Compliance. It can become Category E land if it is made part of the Habitat Reserve as described in Section 10 below. It can also be shifted into Category F, P, or X if it later meets the qualifications for inclusion in one of those categories. Category D will also include federal land contributed as a “Relocatable Contribution” under Section 10(b)(ii). The Resource Management Agencies shall manage Category D lands in accordance with the applicable Federal Land Plans, which may, but are not required by the CHMS, to provide protections for Carbonate Plants.

(ii) Category P: Private Default. This category includes all privately-owned land within the CHMA that has not been designated in Categories M or E.
Category P will also include private land contributed as a Relocatable Contribution under Section 10(b)(ii).

(iii) Category X: Transfer. This category includes federal lands that have been designated for transfer out of federal ownership. It is intended that the Resource Management Agencies will select parcels for Category X because they have commercial value but no significant habitat value for the Carbonate Plants or other public use value (the commercial value may be for uses other than mining). Once Category X parcels are transferred to private ownership, they become Category P. If such parcels subsequently obtain ESA Compliance, they convert to Category M2.

6. Administrative Units

For purposes of administering the CHMS across the 160,000-acre CHMA, the CHMA has been divided into five subareas (“Administrative Units” or “Units”): White Mountain, Furnace, Helendale, Bertha, and Moonridge/Onyx. The general location of these Administrative Units is shown on Figure 7.

Of the five Units, only White Mountain, Furnace, and Helendale have any expected potential for conflict between mining activity and the Carbonate Plants. The other two Units, Bertha and Moonridge/Onyx, encompass 61,751 acres of land, but contain only about 88 acres of known habitat for Carbonate Plants (exclusively Cushenbury buckwheat), all of which is part of the Initial Habitat Reserve. The Bertha and Moonridge/Onyx Units are included in the CHMA in order to strengthen the basis of analysis for the CHMS Biological Opinion by including most of the range of the Carbonate Plants in the area analyzed.

In order to assure that the conservation of habitat under the CHMS is broadly distributed across the CHMA, Reserve “Priority Areas,” as defined in Section 9(b), have been identified for each of the three Units with existing or expected mining activity. The Priority Areas include a good representation of important habitat for Carbonate Plants that exist in each Unit, and both rules and incentives have been established for the addition of the Priority Areas to the Habitat Reserve (see Section 9(b)).

7. Conservation Value

Mining interests obtain ESA Compliance under the CHMS by contributing a certain amount of land to the Habitat Reserve to offset impacts to habitat on land to be mined. But because the Conservation Value (or “CV”) of various parcels of land varies dramatically within the CHMA, the trade-off cannot be measured in raw acres of land, lest land of low Conservation Value be used to compensate for the mining of land of high Conservation Value. The CHMS addresses this problem by providing a means for evaluating land within the CHMA in terms of its Conservation Value per acre for the Carbonate Plants. This section describes how the Conservation Value of any parcel of land within the CHMA may be evaluated using a common method of measurement.

(a) Conservation Units and Conservation Credits. The unit of measurement of Conservation Value is referred to as a “Conservation Unit,” and may be abbreviated, “CU.” The “currency” of the CHMS is “Conservation Credits”; a Conservation Credit represents one Conservation Unit of value. Measuring Conservation Value in terms of Conservation Units is used in a variety of ways under the CHMS, including:
• As a basis for determining the number of Conservation Credits that will be given to a party who makes a Reserve Contribution of a particular parcel of land (see Section 10(c));

• As a basis for determining the Reserve Contribution or the number of Conservation Credits that will be required in order to obtain ESA Compliance for a particular parcel of land under the CHMS (see Section 11(a)); and

• As a basis for monitoring the growth of the Habitat Reserve (see Section 14(b)–(c) below).

The balance of this section describes how a parcel of land is evaluated in terms of Conservation Units.

(b) Application of multipliers. The Conservation Value, in terms of Conservation Units, of any parcel of land within the CHMA can be determined by dividing the parcel into parts based upon the type of habitat on each part (see box above for definitions of habitat types), and multiplying the acreage of each part by the applicable multiplier from Table 1. In addition, the Resource Management Agencies shall apply a minimum 1.0 CV/acre to any land required for the “Priority Areas” in accordance with Section 9(b)(iii).

(c) Source of data. The data to be used to evaluate the Conservation Value of land for purposes of the CHMS is the Forest Service’s official GIS database for the CHMS that identifies all land within the CHMA by the habitat categories shown in the definitions box in the left column (the “Habitat Inventory”). Accordingly, no new field surveys shall be required to evaluate the Conservation Unit value of a parcel, although a party may seek to have the Habitat Inventory revised under Section 14(d)(iv). The initial Habitat Inventory is depicted on Map 4 in Appendix I, and statistics from the Habitat Inventory are presented in Appendix D. The Habitat Inventory will be updated periodically in accordance with Section 14(d). The basis for the development of the initial Habitat Inventory and the criteria for modifying the Habitat Inventory are described in Appendix C. The Forest Service shall make the initial Habitat Inventory and each update available to the public by such digital and/or hard copy methods as it deems appropriate from time to time.

Table 1: Conservation Value Multipliers

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75 ×</td>
<td>acres containing Occupied Habitat for all four Carbonate Plants</td>
</tr>
<tr>
<td>1.50 ×</td>
<td>acres containing Occupied Habitat for any three of the Carbonate Plants</td>
</tr>
<tr>
<td>1.25 ×</td>
<td>acres containing Occupied Habitat for any two of the Carbonate Plants</td>
</tr>
<tr>
<td>1.00 ×</td>
<td>acres containing Occupied Habitat for any one of the Carbonate Plants</td>
</tr>
<tr>
<td>0.50 ×</td>
<td>acres containing Suitable Habitat for any one or more of the Carbonate Plants</td>
</tr>
<tr>
<td>0.25–1.00 ×</td>
<td>acres containing Revegetated Habitat (depending on the success criteria met; see Table 2)</td>
</tr>
<tr>
<td>0.25 ×</td>
<td>acres containing Other Beneficial Habitat</td>
</tr>
<tr>
<td>0.00 ×</td>
<td>all other acres (acres containing no habitat benefiting the Carbonate Plants)</td>
</tr>
</tbody>
</table>

Table 2: Conservation Value Multipliers for Revegetated Habitat

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75 ×</td>
<td>acres containing Occupied Habitat for all Carbonate Plants</td>
</tr>
<tr>
<td>1.50 ×</td>
<td>acres containing Occupied Habitat for any three of the Carbonate Plants</td>
</tr>
<tr>
<td>1.25 ×</td>
<td>acres containing Occupied Habitat for any two of the Carbonate Plants</td>
</tr>
<tr>
<td>1.00 ×</td>
<td>acres containing Occupied Habitat for any one of the Carbonate Plants</td>
</tr>
<tr>
<td>0.50 ×</td>
<td>acres containing Suitable Habitat for any one or more of the Carbonate Plants</td>
</tr>
<tr>
<td>0.25–1.00 ×</td>
<td>acres containing Revegetated Habitat (depending on the success criteria met; see Table 2)</td>
</tr>
<tr>
<td>0.25 ×</td>
<td>acres containing Other Beneficial Habitat</td>
</tr>
<tr>
<td>0.00 ×</td>
<td>all other acres (acres containing no habitat benefiting the Carbonate Plants)</td>
</tr>
</tbody>
</table>

A conservation multiplier of between 0.25 and 1.00 per acre will apply to Revegetated Habitat as follows (see Section (a) of the Revegetation Guidelines for a more complete description):

- 0.25 per acre of Revegetated Habitat without Carbonate Plants
- 0.50 per acre of Revegetated Habitat with at least one Carbonate Plant
- An additional 0.20 per acre of Revegetated Habitat that meet enhanced success criteria
- An additional 0.10 per acre for each additional Carbonate Plant species occurring (for an addition to the multiplier of up to 0.30 per acre)
Definition

“edge” means the line where land of one of the three types of land use categories (Mining Category, Reserve Category, or Uncommitted Category) meets another of the three types; for purposes of determining whether Mining Category land shares an edge with Reserve Category land, any Reserve Category land that is within one-fifth (1/5) mile of Mining Category land shall be deemed to share an edge with the Mining Category land.

Table 3: Conservation Value Totals

<table>
<thead>
<tr>
<th>Unit</th>
<th>Total Acres</th>
<th>Total Cons. Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Mountain</td>
<td>10,573</td>
<td>922 cu</td>
</tr>
<tr>
<td>Furnace</td>
<td>47,578</td>
<td>10,544 cu</td>
</tr>
<tr>
<td>Helendale</td>
<td>40,560</td>
<td>8,865 cu</td>
</tr>
<tr>
<td>Bertha</td>
<td>17,474</td>
<td>827 cu</td>
</tr>
<tr>
<td>Moonridge/Onyx</td>
<td>44,277</td>
<td>1,072 cu</td>
</tr>
<tr>
<td>TOTAL</td>
<td>160,462</td>
<td>22,230 cu</td>
</tr>
</tbody>
</table>

*Excludes the 1.0 cu/acre minimum CV potential in the final configuration of the Priority Areas.

Table 4: Edge Adjustments by Land Use Category

<table>
<thead>
<tr>
<th>Edge Interface by Land Use Category</th>
<th>Adjustment per Lin. Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>E vs. M or F</td>
<td>24 cu</td>
</tr>
<tr>
<td>E vs. D, P, or X</td>
<td>12 cu</td>
</tr>
<tr>
<td>M or F vs. D, P, or X</td>
<td>12 cu</td>
</tr>
<tr>
<td>M or F vs. E</td>
<td>24 cu</td>
</tr>
</tbody>
</table>

(d) *Initial Conservation Values within the CHMA.* The Conservation Values of land within the CHMA as of the commencement of the CHMS are depicted on Map 5 in Appendix I. Table 3 provides a statistical breakdown of the total Conservation Value existing within each Administrative Unit within the CHMA.

(e) **Adjusted Conservation Value.** Conservation Value takes into account the inherent habitat characteristics of any given parcel within the CHMA, but it does not take into account the configuration in which the habitat lies. Generally speaking, when habitat is more connected and has fewer edges where human activities could disrupt reserve function, it is of greater value to the species that it supports. To take this into account, the CHMS uses the concept of “Adjusted Conservation Value” or “ACV.”

Adjusted Conservation Value takes into account the net increase or net decrease in edge (see the definition of “edge” in the box below) resulting from both new Reserve Contributions and new mining activities. When a Reserve Contribution is made, net increases in reserve edge will result in a discount in Conservation Value, and net decreases in Reserve edge will result in a bonus in Conservation Value. Conversely, when a new mining activity receives ESA Compliance under the CHMS, net increases in mining edge will result in an increase in required habitat compensation, and net decreases in mining edge will result in a decrease in required habitat compensation. In making these edge adjustments, edges creating an interface between Conservation Category lands and Mining Category lands are deemed to have a greater negative impact than edges that create an interface either between Conservation Category lands and Uncommitted Category lands or between Mining Category lands and Uncommitted Category lands.

Specifically, Adjusted Conservation Value is calculated as follows:

(i) For the newly proposed Conservation Category or Mining Category lands, multiply the lineal mileage of new edge (that is, excluding the edge where the new Conservation Category land meets existing Conservation Category land or where the new Mining Category land meets existing Mining Category land) of the proposed land area by the corresponding cu/mile factors in Table 4.

(ii) For any existing edge eliminated by the new proposed Conservation Category or Mining Category lands (that is, the edge where the new Conservation Category land meets existing Conservation Category land or where the new Mining Category land meets existing Mining Category land), multiply the lineal mileage of such edge as it existed before the proposed change by the corresponding cu/mile factors in Table 4.

Note that for purposes of determining whether Mining Category land shares an edge with Conservation Category land, a shared edge will be attributed in cases where a Conservation Category boundary is within one-fifth (1/5) mile of Mining Category land, though the two boundaries do not physically touch.
The length of the attributed edge shall be the length of an imaginary line that is half way between the two parcels for the distance that such line is in the 1/5-mile zone between the two parcels. Such 1/5-mile proximities that are formed by parcel lines that meet at angles of ninety (90) degrees or more shall be exempt from this attributed edge treatment. The attributed edge concept is illustrated in Figure 8.

(iii) Subtract the result in (ii) above from the result in (i) above to arrive at the “Net Edge Adjustment.”

(iv) In the case of a Reserve Contribution, subtract the Net Edge Adjustment from the Conservation Value of the parcel to obtain the Adjusted Conservation Value; in the case of an area of proposed mining activity, add the Net Edge Adjustment to the Conservation Value of the parcel to obtain the Adjusted Conservation Value (note that the Net Edge Adjustment can be a positive or a negative number and can therefore result in an ACV that is either greater or less than the unadjusted Conservation Value).

The following formulae summarize the calculation of Adjusted Conservation Value:

\[
ACV_{\text{Reserve Contribution}} = CV - (\text{Net Edge Adjustment})
\]

\[
ACV_{\text{Mining Proposal}} = CV + (\text{Net Edge Adjustment})
\]

A positive Net Edge Adjustment value is always regarded as a detriment to the habitat for Carbonate Plants. As reflected in the formulas above, that detriment is translated into a decrease in the Conservation Value recognized for Reserve Contributions and as an increase in the Conservation Value for which compensation would be required for a mining proposal.

The examples shown in Appendix G demonstrate how this calculation is made and how it operates as an incentive to configure both Reserve Contributions and mining activities so as to keep habitat connected and minimize edge effects. Appendix F includes worksheets for valuing Reserve Contributions and ESA Compliance requirements; these worksheets incorporate the procedure for calculating Adjusted Conservation Value and Net Edge Adjustment.

(f) Application of Adjusted Conservation Value.

Adjusted Conservation Value, measured in Conservation Units, is a concept of measurement. When determining the number of Conservation Credits to be given for a particular Reserve Contribution, the permanence of the contribution must also be taken into account (see Section 10(c)(iii)). To determine the number of Conservation Credits that will be required to obtain ESA Compliance for a particular mining activity, the “Compensation Ratio” must be applied (see Section 11(a)).

The following section concludes this part on “components” by describing the key tools that are available to form the Habitat Reserve.

8. Conservation Tools

Several different tools can be used to assemble a Habitat Reserve that meets the CHMS objectives. This section describes some of the key tools, roughly in order of their expected importance. These tools are catalogued in this section without suggesting how they might work together to implement the CHMS. The purpose of having a variety of tools available is to make it possible to choose the best tool or tools for a given situation; not all of the tools are appropriate for all circumstances. Part III: Implementation, which follows this section, shows how the various tools are put to use to form the Habitat Reserve.
(a) Federal designations. Most of the habitat for the Carbonate Plants is located on federal lands managed by the Resource Management Agencies. Much of that habitat is under mining claim and is therefore not within the control of the federal agencies to provide full protection from future mining. The Initial Habitat Reserve land shown on Map 3 in Appendix I is not, however, under existing claim and shall be designated by the Resource Management Agencies as Habitat Reserve. The means by which federal land is designated Habitat Reserve is by protecting it in the manner described in Section 9(f), which may allow for public use that is compatible with the intended purpose of the Habitat Reserve.

(b) Federal purchase. Since much of the habitat for the Carbonate Plants is on privately-owned land or federal land that is subject to mining claims, tools are needed to induce private parties to sell (or exchange; see subsections (e) and (f) below) their privately-owned land or mining claims for the Habitat Reserve, as follows:

(i) Types of purchase. The federal government may purchase two types of interest under the CHMS. Such purchases must be made in accordance with all applicable federal laws and regulations. Also, protections against third-party claims, as provided in Section 9(f), must be in place prior to or concurrent with such acquisitions. The two types of interest that the federal government may purchase are:

(a) Private property in fee, including patented mining claims.

(b) Mining claims on federal lands (by paying for the relinquishment of such claims); purchases of unpatented claims may require special federal legislation.

(ii) Willing sellers. Because the CHMS is a voluntary program, any purchases pursuant to the CHMS will be between the federal agencies and willing private sellers. The use of eminent domain is not a tool for implementing the CHMS.

(iii) Prioritization. When funds are available, purchases will be prioritized under the CHMS so as to obtain the greatest contribution to the Habitat Reserve for the dollar spent. The definition of Conservation Unit can be valuable for this purpose, because it allows potential purchases to be ranked based upon Conservation Units/dollar (or, “CU/$”)—a direct measure of conservation value preserved for each dollar spent. A direct purchase component of the CHMS also provides the opportunity to obtain some parcels whose value to the Habitat Reserve is not fully reflected by the CU/$ measure. Such parcels may include, for example, ones that provide key linkages between other conserved parcels or important habitat that is particularly susceptible to loss to mining activities.

(c) Project compliance. A core feature of the CHMS is that it provides a procedure for obtaining ESA Compliance for new mining activities, as detailed in Section 11. The compensation required for obtaining ESA Compliance is the offering of Conservation Credits that represent Reserve Contributions. The effect is that land is added to the Habitat Reserve, and private parties obtain ESA Compliance. Project compliance represents the mining industry’s primary contribution to the CHMS and is a primary means of building the Habitat Reserve by adding to the Initial Habitat Reserve.

(d) Conservation banking. Private parties who hold claims or land within the CHMA with Conservation Value may obtain Conservation Credits—either by making Reserve Contributions or by purchasing them from other private parties—and hold them for future use or sale rather than immediately use them to obtain ESA Compliance. This practice may be referred to as “conservation banking” because it results in a “bank” of credits for the party who makes the Reserve Contribution, which may be held, sold, or used in the future, as detailed in Section 10(a). Regardless of how the Conservation Credits are used, when a party makes a Reserve Contribution and obtains credits, the size of the Habitat Reserve is immediately increased.

(e) Exchanges for federal lands. The Resource Management Agencies may hold certain lands that have commercial value, but little or no Conservation Value or other public use value. An additional way to increase the Habitat Reserve is for the federal government to exchange such lands for privately owned land that has substantial Conservation Value and set aside the land received for the Habitat Reserve, as discussed
in subsection (a) above. The federal land being traded
to a private party need not be located within the
CHMA. Such exchanges must be made in accordance
with all applicable federal laws and regulations. Also,
protections against third-party claims, as provided in
Section 9(f), must be in place prior to or concurrent
with such acquisitions.

(f) Fee-for-claims swaps. The Forest Service and the
BLM could also exchange surplus lands for mining
claims that have substantial Conservation Value and
designate the land received as Habitat Reserve, as dis-
cussed in subsection (a) above. As with exchanges for
fee-owned land, federal land being traded to a private
party need not be located within the CHMA. Such ex-
changes must be made in accordance with all appli-
cable federal laws and regulations. Protections against
third-party claims, as provided in Section 9(f), must be
in place prior to or concurrent with such acquisitions.
Such exchanges may also require special federal legisla-
tion.

(g) Revegetation. Land that has been mined need
not result in a permanent biological loss. Once a min-
ing operation is complete in a particular location,
SMARA and federal regulations require that the land
be reclaimed, including that it be revegetated. Further-
more, the CHMS provides incentives to meet revege-
tation success criteria included in the “Guidelines and
Success Criteria for Revegetation and Carbonate Plant
Introductions” set forth in Appendix E (the “Revege-
tation Guidelines”). When land has been successfully
revegetated, the landowner or claim holder may, but is
not required to, make a Reserve Contribution of such
land and receive either ESA Compliance or Conserva-
tion Credits (see Section 12(b) and Table 2 on p. 18).
Such contributions are yet another way that the Habi-
tat Reserve can be increased over time.

(h) Other contributions. Land may also be added to
the Habitat Reserve by means of contributions for
regulatory compliance other than ESA Compliance
under the CHMS, such as for CEQA compliance or
NEPA compliance that is not related to the Carbonate
Plants.

Special legislation may be sought to appropriate
funds for the types of transactions described in subsec-
tions (b), (e), and (f) above and possibly to assist in the
implementation of various transactions. Special legisla-
tion is discussed in more detail in Section 16.

The following part describes how the conservation
toolkit described in this section, as well as each of the
other elements or components described in this
Part II, are to be used to implement the CHMS.
Carbonate Habitat Management Strategy

III. Implementation

This part describes the implementation of the CHMS—the nuts and bolts of how it will operate to meet the objectives set forth in Section 2. It begins with an overview of how the Habitat Reserve will be formed over time. It then details both how private parties will make Reserve Contributions toward the formation of the Habitat Reserve and how mining interests may obtain ESA Compliance under the CHMS. It concludes by describing the role that revegetating reclaimed mining areas can play in building the Habitat Reserve and helping mining interests obtain ESA Compliance.

9. Reserve Formation

Forming the Habitat Reserve over time is how the CHMS meets its conservation objectives. This section describes how the Habitat Reserve is formed under the CHMS and how the CHMS becomes fully operational within each Administrative Unit as specified reserve formation objectives are met. Table 5 on page 24 summarizes the acreage and Conservation Value of the various components of the Reserve.

(a) Initial Habitat Reserve. The Habitat Reserve is seeded by the Initial Habitat Reserve (see Section 4(d)(i)) prior to any private Reserve Contributions under the CHMS. The Resource Management Agencies have agreed to designate these lands as Habitat Reserve in accordance with Section 8(a) because they are able to do so without interfering with the interests of private parties.

(b) Priority Areas. The CHMS gives high priority to the acquisition of land for the Habitat Reserve within the areas designated on Map 3 of Appendix I as “Stage 1 Priority Areas” and “Stage 2 Priority Areas” (collectively, the “Priority Areas”). These areas include important habitat for the Carbonate Plants as well as the potential for preserving large contiguous blocks of habitat and connecting land. The following tools, which include both incentives and rules, shall be in effect under the CHMS to facilitate the addition of land within the Priority Areas to the Reserve:

(i) Stage 1 Priority Area requirement. Within any Administrative Unit, the following must be added to the Habitat Reserve before any loss of habitat may be authorized under the CHMS within that Unit: (a) 100% of the Occupied Habitat that occurs in the Stage 1 Priority Areas; (b) 85% of the Suitable Habitat that occurs within the Stage 1 Priority Areas; and (c) sufficient additional land to preserve such Occupied and Suitable Habitat in one contiguous patch (“Connective Land”). The determination of the sufficiency of the Connective Land shall be in the discretion of the applicable Resource Management Agency. Upon the addition of all such lands to the Habitat Reserve, ESA Compliance may be obtained in the Unit, and the Unit is deemed to be “Activated.” This provision assures a substantial amount of important habitat will be included in the Habitat Reserve within a Unit in advance of any habitat loss within that Unit under the CHMS. No Stage 1 Priority Areas are designated for the Bertha or Moonridge Onyx Units because mining activity is not expected to occur there.

(ii) Stage 2 Priority Area loss prohibition. Even after a Unit has been Activated, no loss of habitat may be authorized under the CHMS within any Stage 2 Priority Area until the following are added to the Habitat Reserve within that Stage 2 Priority Area: (a) 100% of the Occupied Habitat; (b) 85% of the Suitable Habitat; and (c) sufficient Connective Land to preserve such Occupied and Suitable Habitat in one contiguous patch. The determination of the sufficiency
of the Connective Land shall be in the discretion of the applicable Resource Management Agency.

(iii) Conservation Value enhancement. Ordinarily, only Occupied Habitat has a Conservation Value of 1.0 CV/acre or more. In order to assist the meeting of the Stage 1 and Stage 2 Priority Area requirements described in subsections (i) and (ii) above, the applicable Resource Management Agency may, in negotiations with a prospective contributor of land to the Reserve, assign a minimum Conservation Value of 1.00 CU/acre to any portion of land within the Priority Area that is contributed to the Reserve. Although such minimum value assignments shall be in the discretion of the Resource Management Agency, the agency must make such minimum value assignments as to any land that it determines is necessary to meet the requirements of subsection (i) or (ii) above. This provision is intended to provide significant incentive for private parties to make Reserve Contributions in the Priority Areas in configurations that will help meet CHMS objectives.

(c) Means of Adding Priority Areas to the Reserve. It is left to the various interested parties to engage in activities that will help add the Priority Areas to the Habitat Reserve. Drawing from the conservation tools described in Section 8, the three primary activities that are likely to be used to add Priority Areas to the Reserve are as follows:

(i) Federal acquisitions. The Resource Management Agencies may enter into purchase and sale agreements and exchanges to acquire land and claims from private parties for addition to the Habitat Reserve (see Sections 8(b), (e), and (f)). Some such purchases may require a congressional appropriation (see Section 16(a)), and both purchases and exchanges may be benefited by special streamlining legislation (see Section 16(b)).

(ii) Contingent Contributions. Private parties may make “Contingent Contributions” (see Section 10(d))—contingent offers of Reserve Contributions

Table 5: Reserve Formation Statistics

<table>
<thead>
<tr>
<th></th>
<th>Occ. Hab. (acres)</th>
<th>Cons. Val. (cu)</th>
<th>Occ. Hab. (% of Unit)</th>
<th>Cons. Val. (% of Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Mountain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Reserve</td>
<td>99</td>
<td>922</td>
<td>10%</td>
<td>12%</td>
</tr>
<tr>
<td>Stage 1 Prior.</td>
<td>57</td>
<td>326</td>
<td>58%</td>
<td>35%</td>
</tr>
<tr>
<td>Stage 2 Prior.</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total IR + S1 + S2</td>
<td>67</td>
<td>435</td>
<td>68%</td>
<td>47%</td>
</tr>
<tr>
<td>Furnace</td>
<td>1,545</td>
<td>10,544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Reserve</td>
<td>202</td>
<td>2,094</td>
<td>13%</td>
<td>20%</td>
</tr>
<tr>
<td>Stage 1 Prior.</td>
<td>452</td>
<td>1,234</td>
<td>29%</td>
<td>12%</td>
</tr>
<tr>
<td>Stage 2 Prior.</td>
<td>418</td>
<td>1,125</td>
<td>27%</td>
<td>11%</td>
</tr>
<tr>
<td>Total IR + S1 + S2</td>
<td>1,072</td>
<td>4,453</td>
<td>69%</td>
<td>42%</td>
</tr>
<tr>
<td>Helendale</td>
<td>1,460</td>
<td>8,865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Reserve</td>
<td>218</td>
<td>2,934</td>
<td>15%</td>
<td>33%</td>
</tr>
<tr>
<td>Stage 1 Prior.</td>
<td>633</td>
<td>1,513</td>
<td>43%</td>
<td>17%</td>
</tr>
<tr>
<td>Stage 2 Prior.</td>
<td>335</td>
<td>842</td>
<td>23%</td>
<td>9%</td>
</tr>
<tr>
<td>Total IR + S1 + S2</td>
<td>1,186</td>
<td>5,289</td>
<td>81%</td>
<td>60%</td>
</tr>
<tr>
<td>Bertha</td>
<td>73</td>
<td>827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Reserve</td>
<td>73</td>
<td>663</td>
<td>100%</td>
<td>80%</td>
</tr>
<tr>
<td>Stage 1 Prior.</td>
<td>-</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Stage 2 Prior.</td>
<td>-</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total IR + S1 + S2</td>
<td>73</td>
<td>663</td>
<td>100%</td>
<td>80%</td>
</tr>
<tr>
<td>Moonridge/Onyx</td>
<td>15</td>
<td>1,072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Reserve</td>
<td>15</td>
<td>824</td>
<td>100%</td>
<td>77%</td>
</tr>
<tr>
<td>Stage 1 Prior.</td>
<td>-</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Stage 2 Prior.</td>
<td>-</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total IR + S1 + S2</td>
<td>15</td>
<td>824</td>
<td>100%</td>
<td>77%</td>
</tr>
<tr>
<td>Total</td>
<td>3,192</td>
<td>22,230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Reserve</td>
<td>518</td>
<td>6,624</td>
<td>16%</td>
<td>30%</td>
</tr>
<tr>
<td>Stage 1 Prior.</td>
<td>1,142</td>
<td>3,073</td>
<td>36%</td>
<td>14%</td>
</tr>
<tr>
<td>Stage 2 Prior.</td>
<td>753</td>
<td>1,967</td>
<td>24%</td>
<td>9%</td>
</tr>
<tr>
<td>Total IR + S1 + S2</td>
<td>2,413</td>
<td>11,664</td>
<td>76%</td>
<td>52%</td>
</tr>
</tbody>
</table>
that are not effective until the completion of the contribution of a Stage 1 Priority Area to the Habitat Reserve. Several parties could make such Contingent Contributions, and each of their Reserve Contributions would become effective simultaneously when transactions that would complete the addition of the Stage 1 Priority Area are all prepared to close. This tool can help resolve the “chicken and egg” problem that would otherwise exist before a Unit is Activated by the addition of its Stage 1 Priority Areas to the Habitat Reserve.

(iii) Ordinary Reserve Contributions. Priority Areas may also be added to the Habitat Reserve by means of direct Reserve Contributions for Conservation Credits.

(d) Furnace Unit Stage 1 Priority Areas. A series of transactions for the addition of the Furnace Unit Stage 1 Priority Areas to the Reserve (the “Initial Furnace Transactions”) is well along in development. It is anticipated that some or all of these transactions shall be described in the biological assessment that is submitted to the USFWS to initiate the CHMS Section 7 Consultation. Map 6 in Appendix I shows how the Habitat Reserve may be configured if all such transactions were to occur.

(e) Incremental Reserve growth. After the Initial Habitat Reserve is established, the Habitat Reserve will continue to grow as parties voluntarily make Reserve Contributions to obtain ESA Compliance or to bank Conservation Credits. Because of the requirements of subsection (b) above, much of this incremental growth is likely to occur in the Priority Areas initially. Because the “Compensation Requirement” (see Section 11(a)) for obtaining ESA Compliance is based on a 3:1 “Compensation Ratio,” the overall pace of growth of the Habitat Reserve beyond the Initial Habitat Reserve will be at least three times the pace of loss of habitat caused by mining activity (in terms of Conservation Value).

(f) Means of protecting Habitat Reserve lands. It is the intention of the CHMS that all Habitat Reserve lands be protected from mining activity in perpetuity and be subjected only to public uses that are compatible with management of the Reserve for its intended purpose. The Resource Management Agencies shall manage the Habitat Reserve lands consistent with this intent within the bounds of their existing regulatory authority. The Forest Service shall also manage Category D lands containing habitat for Carbonate Plants in the same manner as for Habitat Reserve lands until such time, if any, that a Mining Plan is approved over such habitat.

When an interest in land is contributed to the Reserve, it shall be relinquished to the Resource Management Agency in the manner required by Section 10(b), which varies depending on the type of Reserve Contribution made. Regardless of the type of Reserve Contribution, however, the land interest must also be immediately protected from new mining claims in a manner that is satisfactory to the Resource Management Agency. The following are examples of alternative means by which land may be protected from new mining claims, some of which require an intermediate step before the interest is finally conveyed to the Resource Management Agency:

(i) If the land had been previously or concurrently “withdrawn from mineral location,” then new claims would be precluded by federal law once the contributor relinquished a claim on the land.

(ii) The land or claim could be transferred to an intermediary in trust for the Resource Management Agency until the land is made subject to a mineral withdrawal.

(iii) The party making the Reserve Contribution could retain title to the land or mining claim and attach a surface use restriction to the land. This would protect the land from surface use and occupancy by the owner and also avoid exposing the land to new third-party claims. Once the underlying area has been subjected to a mineral withdrawal, the contributor would relinquish the interest to the Resource Management Agency. Note that this kind of temporary surface use restriction should not be confused with the “Surface Entry Restriction” mentioned under Section 10(b)(iii).

(iv) Special legislation could be sought to provide an efficient and permanent means of protecting
lands contributed to the Habitat Reserve (see Section 16(c)).

The mechanisms described in subsections (ii) and (iii) above could be used to batch lands for mineral withdrawal so that withdrawals can be processed in bulk rather than in a piecemeal fashion. Note that a small portion of the Habitat Reserve consists of privately-owned land subject to permanent conservation easement.

\(g \) Adaptivity of reserve design. The CHMS has mechanisms that allow the design of the Habitat Reserve to adapt to new information over time, as follows:

(i) First, the Habitat Inventory is subject to regular revision based upon the best available biological information at a given time (see Section 14(d)). As the Habitat Inventory will drive both incentives to preserve appropriate areas and the required portions of the Priority Areas to be preserved, revision of the Habitat Inventory is an important tool of adaptive reserve design.

(ii) Second, because of the revegetation requirements of the “Reclamation Regulations” (see Section 11(c)), combined with the incentives of the CHMS to introduce or reintroduce Carbonate Plants when revegetating (see Section 12 and the Revegetation Guidelines), most land within the CHMA that is currently habitat for the Carbonate Plants will be available to be managed for the Carbonate Plants in the long run, including land that is mined in the shorter run. So eventually all current habitat for the Carbonate Plants effectively becomes available for the Reserve, providing ultimate flexibility to manage for the benefit of the Carbonate Plants.

(iii) Third, if changed conditions or unforeseen circumstances could mean that continued operation of mining activities pursuant to the CHMS would result in jeopardy to the Carbonate Plants, then the Resource Management Agencies must re-initiate the CHMS Section 7 Consultation and limit or suspend operations under the CHMS until a solution is adopted that meets the needs of the Carbonate Plants (see Section 14(e)). Although the CHMS contains many provisions to avoid re-initiation, this tool is available if necessary to protect the Carbonate Plants. This is a last-resort adaptive management and reserve design tool.

10. Conservation Credits

Private parties may make Reserve Contributions by relinquishing mining claims or transferring ownership to the Resource Management Agency for inclusion in the Habitat Reserve. Such parties will receive Conservation Credits for making such Reserve Contributions. The number of Conservation Credits that a party receives for making a reserve contribution is based upon the Conservation Value, measured in Conservation Units, of the land contributed, subject to certain adjustments that are described in this section. The reason a private party would want to make a Reserve Contribution is that the Conservation Credits can be used to obtain ESA Compliance and therefore have economic value.

(a) Use of Conservation Credits. A party may make a Reserve Contribution and immediately use the resulting Conservation Credits to obtain ESA Compliance. Alternatively, a party may hold the resulting credits, thereby “banking” them for future use. A party holding Conservation Credits (a “Credit Holder”) may do any of the following with them:

- Use them (“spend” them) to obtain ESA Compliance;
- Sell them to another party for whatever price the market will bear; or
- Hold them for future ESA Compliance or sale.

One advantage of receiving Conservation Credits to use for ESA Compliance rather than making a direct contribution of land is that the payments in Conservation Credits can precisely match the compliance requirement, avoiding overcompensating to obtain ESA Compliance. For example, if ESA Compliance on a particular parcel requires 500 Conservation Credits, but the parcel that the landowner has to offer would yield 700 Conservation Credits, the landowner or claim holder could make a Reserve Contribution of the whole parcel and receive ESA Compliance plus
“change” in the amount of 200 Conservation Credits, which may be used later or sold to another party. Conversely, if the party seeking ESA Compliance needed 500 Conservation Credits, but had a parcel that would yield only 400 Conservation Credits, that party could make up the difference by purchasing 100 Conservation Credits from another private party that was banking some credits. The use of Conservation Credits thereby makes the compliance process more efficient.

(b) Types of Reserve Contribution. There are two basic types of Reserve Contribution: a “Permanent Contribution” and a “Relocatable Contribution.” Either of these basic types could also be a “surface rights contribution.”

(i) Permanent Contributions. A Permanent Contribution is an absolute, permanent grant of private land or relinquishment of a mining claim. To make a Permanent Contribution is to relinquish a parcel or a claim and receive Conservation Credits in exchange. Permanent Contributions receive the full number of Conservation Credits with no deduction for lack of permanence.

(ii) Relocatable Contributions. Relocatable Contributions leave some flexibility with the contributor. Rather than making a grant of land or relinquishment of a claim, a Relocatable Contribution is made by entering into an agreement whereby the contributor agrees not to disturb the land during the term of the agreement (a “Use Restriction Agreement”). Use Restriction Agreements are for a term of twenty (20) years each. The form of and procedure for engaging in Use Restriction Agreements shall be at the discretion of the respective Resource Management Agencies. Use Restriction Agreements must be recorded against the subject land or mining claim.

At any time during the term, the contributor may replace the land covered by the Use Restriction Agreement with a different Reserve Contribution of equal value. Because a Relocatable Contribution necessarily limits what can be done on the parcel from a conservation management perspective, the Conservation Credits given for a Relocatable Contribution will be reduced by 50% of what would have been received for a Permanent Contribution of the same land. Only Permanent Contributions shall be regarded as adding land to the Habitat Reserve, so only Permanent Contributions will be counted in determining whether a Priority Area has been added to the Reserve. Land under a Relocatable Contribution shall be regarded as Category D if on public land and Category P if on private land.

A replacement contribution during the term of the Use Restriction Agreement may be either a Permanent Contribution or a different parcel of land as a Relocatable Contribution, but the replacement contribution must yield at least the same number of Conservation Credits as the original contribution (the contributor would receive “change” in the form of additional Conservation Credits if the replacement contribution yields a greater number of Conservation Credits than the original Relocatable Contribution). Making a replacement contribution does not reset the 20-year term of the Use Restriction Agreement. One option the contributor would always have would be to make a Permanent Contribution of the same land included in the Relocatable Contribution and receive additional Conservation Credits (the number of Conservation Credits that the land would yield as a Permanent Contribution at the time the contribution is converted less the number of Conservation Credits previously received for the Relocatable Contribution). The Use Restriction Agreement shall provide that, if by the end of the term of such agreement the contributor has not converted to a Permanent Contribution of land, then the land then under the Use Restriction Agreement shall automatically be converted to a Permanent Contribution, and the contributor will receive the excess Conservation Credits for doing so.

For purposes of calculating the Conservation Value of land contributed under a Use Restriction Agreement, the Habitat Inventory at the time of the contribution shall control for the life of the Use Restriction Agreement, but the Conservation Value of any replacement contribution shall be measured based upon the Habitat Inventory as of the time of the replacement contribution. When a permanent contribution is made of land already under a Use Restriction Agreement, the Habitat Inventory at the time of the permanent contribution shall control.
The availability of the Relocatable Contribution option gives mining interests some flexibility in the management of their holdings. Even though fewer Conservation Credits would be received by the contributor, the party may choose to make a Relocatable Contribution, for example, because:

- The mineral value of the land is not certain at the time of the contribution, so the contributor wants to reserve the right to replace the contribution with other land if the mineral value is determined to be high; or
- The contributor believes that the Conservation Value of the land may increase in the future—either because of discovery of additional Occupied Habitat on the land, because revegetation activities (see Section 12) may increase the Conservation Value, or because the contribution of adjacent lands may improve the Adjusted Conservation Value (see Section 7(e)) in the future—and the contributor therefore wants to wait until the Conservation Value is increased before making a Permanent Contribution of the land.

Providing such flexibility is a benefit to the contributor, but it is also of value from a conservation standpoint. The relocation feature temporarily limits conservation management options, but it effectively provides double the amount of land as long as the relocation option remains open (because only 50% of the normal number of Conservation Credits is given for Relocatable Contributions). In any event, no later than the end of the term of the agreement, the Relocatable Contribution must be replaced by a Permanent Contribution of the land.

(iii) Surface rights contributions. The surface rights to land, whether in the form of a claim or fee title, may be offered as either a Permanent or Relocatable Contribution, even if the subsurface is subject to mining. In such cases, the right of surface entry would be restricted on the portion of land comprising the Reserve Contribution. Such restriction shall be documented using an instrument that is recorded against the subject land or mining claim (a “Surface Entry Restriction”). The form of Surface Entry Restrictions shall be at the discretion of the respective Resource Management Agencies. The Conservation Credits available for such surface rights shall be calculated in the same manner as for other Reserve Contributions. See Section 11(d) below regarding obtaining ESA Compliance for subsurface mining.

(c) Receiving Conservation Credits for Reserve Contributions. Parties making Reserve Contributions receive “payment” in the form of Conservation Credits. The number of Conservation Credits that will be given for a specified contribution shall be calculated as follows:

(i) Start with the Conservation Value of the land contributed, measured in Conservation Units in accordance with Section 7(b)–(c);

(ii) Subtract the Net Edge Adjustment to arrive at the Adjusted Conservation Value in accordance with Section 7(e); and

(iii) Multiply the result in (ii) by a permanence factor, which is 1.00 for Permanent Contributions and 0.50 for Relocatable Contributions.

The formula for determining the number of Conservation Credits that will be given for a Reserve Contribution can be summarized as:

Conservation Credits = \((CV - \text{Net Edge Adjustment}) \times \text{permanence factor}\)

Appendix G provides several examples of Conservation Credit calculations; Appendix F includes a worksheet for valuing the Reserve Contribution of a given parcel.

(d) Contingent Contributions. Private parties may make a Reserve Contribution contingent on either (i) Activation of a particular Administrative Unit (based upon the completion of the addition of the entire Stage 1 Priority Area to the Habitat Reserve) or (ii) approval of a Mining Plan for a particular project (a “Contingent Contribution”). Contingent Contributions shall be documented by an escrowed contribution agreement between the contributor and the applicable Resource Management Agency. Once the specified contingency(ies) are satisfied, the Reserve Contribution escrow shall close, the subject land shall be transferred to the Resource Management Agency, and the contributor shall receive Conservation Credits. Conservation Credits obtained in this way may be freely used for any purpose listed in Section 10(a). Applicants may, but are not required to, specify in the
contribution agreement particular mining lands that may be covered using the Conservation Credits obtained by means of a particular Contingent Contribution. The Compensation Requirement for lands so specified are locked in so long as the Conservation Credits that are obtained from the Contingent Contribution are applied to obtain ESA Compliance for the specified lands.

(e) Land and claims qualifying for contribution. Generally, any land or mining claim within the CHMA may be contributed to the Habitat Reserve for the requisite number of Conservation Credits calculated in accordance with subsection (c) above; provided, however, that (i) the land or claim must meet any land acceptance criteria established by the applicable Resource Management Agency with respect to the physical condition or title to the land or claim and (ii) any claim made after October 1, 1999 must be a valid claim under the Mining Law before it may be contributed (there is no validation requirement for earlier claims). October 1, 1999 coincides with the time when the Working Group began to develop the notion of accepting relinquishment of claims for conservation credit; the purpose of accepting only validated claims made after that date is to avoid any possibility or appearance of parties making claims of questionable mineral value just to obtain conservation credit.

(f) Credit Registration. The Forest Service shall record the creation, use, and transfer of Conservation Credits (see box below) in a database to be referred to as the “Credit Registry.” The Forest Service shall maintain the Credit Registry either through a person or office within the Forest Service or by contracting with and overseeing an outside party to fulfill all or part of that function. The Forest Service may delegate some or all of its administrative functions, including any collection of credit registration fees, to another agency or to a private party. Each creation of Conservation Credits shall be evidenced by a concurrence letter issued by the Forest Service that establishes the number of Conservation Credits created and identifies the party who holds them (a “Credit Verification Letter”). The Conservation Credits evidenced by a Credit Verification Letter may be sold or traded until used to obtain ESA Compliance. Any such transfer shall be evidenced by a new Credit Verification Letter issued in the name of the transferee. The Forest Service may adopt more detailed procedures for credit registration and may revise them from time to time as it deems appropriate. An example of such procedures is set forth in Appendix H, but the Forest Service may choose, for example, to adopt simplified procedures for situations in which a mining interest does not wish to hold Conservation Credits, but rather desires to apply them immediately to obtain ESA Compliance (combining the creation and use of credits into one step).

11. ESA Compliance

Mining activities within the CHMA may, but are not required to, obtain ESA Compliance under the CHMS Biological Opinion by complying with the terms of the CHMS. As explained in Section 9(b)(i), ESA Compliance through the CHMS is available within an Administrative Unit only after the Unit has been Activated. This section describes the requirements for obtaining ESA Compliance for a proposed mining activity under the CHMS.

(a) Compensation Requirement. The basic requirement for obtaining ESA Compliance is that Conservation Credits must be given to compensate for the habitat loss that would occur as a result of the proposed mining activity (the “Compensation Requirement”). The amount of the Compensation Requirement for a given parcel is 3 × the Adjusted Conservation Value of the land whose surface is to be disturbed as a result of the proposed mining activity. Compensation is not required for portions of a claim whose surface is not to be disturbed. The ratio of Reserve Contribution requirement to the amount of habitat loss shall be re-

<table>
<thead>
<tr>
<th>Types of Conservation Credit Transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Creation: When a private party makes a Reserve Contribution, Conservation Credits are created and given to that party</td>
</tr>
<tr>
<td>• Use: Parties seeking ESA Compliance must use or “spend” Conservation Credits as compensation for the habitat loss to be caused by the complying project</td>
</tr>
<tr>
<td>• Transfer: Conservation Credits may be freely bought, sold, and traded at whatever price the market will bear</td>
</tr>
</tbody>
</table>
ferred to as the “Compensation Ratio.” The Compensation Ratio of 3:1 was selected as a ratio that would result in a sufficient contribution from project compliance to meet the biological objectives of the CHMS when combined with Reserve contributions from other sources (see Section 8). Appendix F includes a worksheet for calculating the Compensation Requirement for a given parcel.

(b) Auxiliary use areas (Category F lands). In order to make it feasible for a landowner or claim holder to make a Reserve Contribution of certain lands and proceed with a mining activity, the Resource Management Agency may offer right-of-way, well access, or other special use of land not under the ownership or claim of the private party. Such areas are designated as Category F lands under the CHMS. The creation of Category F lands is in the discretion of the Resource Management Agencies with jurisdiction over the underlying land and may traverse Category D or Category E lands, so long as the allowed use is determined by the Resource Management Agency to be compatible with the Habitat Reserve. There shall be no Compensation Requirement for the use of any Category F lands over which the applicant is given access or use rights.

As an example, a mining operator may control land that has substantial conservation value, but which must be traversed to obtain access to an operational area. The Resource Management Agency may be able to induce such operator to make a Reserve Contribution of the parcel if the landowner can retain a right-of-way across the contributed land. Such right-of-way would be managed by the Resource Management Agency as part of the Reserve, subject to the right-of-way retained by the operator. The bulk of the contributed parcel would be designated as Category E, and the right-of-way portion would be designated as Category F.

(c) Mining Plan and reclamation compliance. Most mining activities will be subject to a Mining Plan issued by the applicable Resource Management Agency. In addition, mining operations within the CHMA are subject to certain preexisting reclamation requirements, which may include, depending on location and other factors, reclamation standards under SMARA; a Memorandum of Understanding between the Forest Service, BLM, and the State of California signed October 1992 regarding the application of SMARA on federal lands in California; the Forest Service regulations under 36 CFR 228; and the 1991 Big Bear District Mining Reclamation Standards (all such reclamation regulations that exist from time to time shall be referred to collectively as the “Reclamation Regulations”). A party which has obtained ESA Compliance under the CHMS must remain in substantial compliance with all applicable Reclamation Regulations in all respects in order to maintain ESA Compliance under the CHMS.

(d) Compliance for subsurface mining. Covered Activities that involve subsurface mining may obtain ESA Compliance through the CHMS. In such cases, the Compensation Requirement will be measured according the area of surface disturbance, calculated in the manner set forth in subsection (a) above. No compensation will be required for subsurface activities that do not have direct surface impacts. The ESA Compliance obtained for the surface impacts of subsurface mining activities does not cover impacts from surficial failure or other unexpected surface disturbances. Such types of disturbance will not be addressed by the CHMS Biological Opinion and must therefore be separately addressed outside of the CHMS if they occur. See Section 10(b)(iii) above regarding the ability to offer the surface as a Reserve Contribution.

(e) Compliance Verification Letter. Upon meeting all of the requirements for obtaining ESA Compliance under the CHMS with respect to a parcel, the Forest Service shall issue to the applicant a concurrence letter acknowledging the satisfaction of the requirements for obtaining ESA Compliance with respect to such parcel (a “Compliance Verification Letter.”) Note that the project may also require a concurrence letter from the USFWS as part of the NEPA compliance process for the project for the USFWS to verify that the project is in compliance with the ESA in accordance with the CHMS.

(f) Credit for avoidance of areas approved for mining. If at any time after obtaining ESA Compliance for an area, the landowner or claim holder determines that certain portions of that area need not be disturbed, then the landowner or claim holder may, in its discre-
tion, have the area removed from the ESA Compliance area. Upon application for such removal, the Forest Service shall issue a revised Compliance Verification Letter removing such area from ESA Compliance and a Credit Verification Letter to return to the applicant the number of Conservation Credits previously given by the applicant as compensation for prospective habitat loss on the subject land area. If a Mining Plan had already been issued covering such area, then the applicant must present to the Resource Management Agency a revised Mining Plan or an amendment to the Mining Plan showing the subject area removed from mining. Upon issuance of the revised Compliance Verification Letter, the Forest Service shall automatically update the Habitat Inventory to show the type of habitat existing on the removed area. The applicant may also, in its discretion, take the further step of making a Reserve Contribution of the subject area in exchange for additional Conservation Credits, using the normal contribution procedure set forth in Section 10. The process set forth in this subsection may be employed at any time in the mining and reclamation process so long as the area to be removed from ESA Compliance has not been disturbed.

(g) Effect of ESA Compliance. Once a mining activity has obtained ESA Compliance:

• Covered Activities on the subject land are deemed to be in compliance with the CHMS Biological Opinion, and thus with the ESA, with respect to the species addressed by the CHMS;

• The subject land is moved to Category M2 (and from there to Category M1 once a Mining Plan is in place for the land);

• The Habitat Inventory is updated to show the subject land as nonhabitat (see Section 14(d)(i));

• Covered Activities on the subject property cannot be affected by subsequent changes in the Habitat Inventory on the subject land; and

• Covered Activities on the subject property will benefit from any subsequent modifications to the CHMS that add to the species addressed by the CHMS.

ESA Compliance under the CHMS is subject to any re-initiation of the CHMS Section 7 Consultation, as described in Section 14(e).

As described in Section 3(b)(iii), the County shall adopt standardized conditions of approval consistent with the CHMS that may apply on a project-by-project basis to applications for mining and reclamation activities that are regulated by the County.

12. Revegetation

One characteristic of mining activities is that they have a conclusion, and after their conclusion the underlying land has an opportunity to regenerate habitat. The CHMS incorporates this opportunity to “recycle” the land as an important component of the strategy.

(a) Reclamation Regulations. As stated in Section 11(c) above, for a mining activity to maintain ESA Compliance under the CHMS, the activity must maintain substantial compliance with applicable Reclamation Regulations. Such regulations may include mandatory revegetation standards.

(b) Optional Reserve Contributions. As an incentive for mining interests to meet and exceed the revegetation requirements of the Reclamation Regulations, a landowner or claim holder who reclaims and revegetates mining land to meet the criteria for Revegetated Habitat (see box on page 18 and the Revegetation Guidelines) may make a Reserve Contribution of such land and receive Conservation Credits. Since the Habitat Inventory will show areas that have been granted ESA Compliance to have no habitat, the landowner or claim holder will want to first have the land resurveyed and request that the Habitat Inventory be updated to reflect the existence of Revegetated Habitat on the land. Section 14(d) describes the procedure for updating the Habitat Inventory. As shown in Section 7(b) and Section (a) of the Revegetation Guidelines, the Conservation Value of Revegetated Habitat varies based upon the success criteria that are met on each revegetated parcel.

(c) ESA coverage for revegetated areas. Conservation of the Carbonate Plants will benefit if mining interests make attempts to revegetate with Carbonate Plants beyond what is required under the Reclamation Regulations. Mining interests may desire to make such
attempts both to find the most effective techniques for successfully revegetating with Carbonate Plants and to apply those techniques to successfully revegetate areas for Conservation Credits. Such effort are potentially discouraged, however, by the fact that the species are protected by the ESA and that success in revegetating areas could become a hindrance to future mine planning. This situation may occur, for example, if (i) the revegetation effort was only partially successful, so the landowner or claim holder would get too few Conservation Credits to make a Reserve Contribution worthwhile or (ii) it is later discovered that mineral deposits on the land are of greater value than the potential to receive Conservation Credits. To avoid such potential disincentives for revegetation efforts, losses of Carbonate Plants on land within the CHMA that becomes occupied by Carbonate Plants due to private revegetation activities shall be authorized under the terms and conditions described in Section (d) of the Revegetation Guidelines.

The following part, on CHMS administration, details the various parties and procedures that will be involved in administering the CHMS.
Carbonate Habitat Management Strategy

IV. Administration

All of the concepts important to the CHMS have been described in the preceding parts. This part provides details regarding how the CHMS is to be administered, monitored, and funded. It also includes a section on federal legislation that may be sought to assist in implementing the CHMS and a section on how the CHMS may be amended.

13. Parties and Responsibilities

The CHMS contemplates the coordination of efforts by a number of parties to implement its provisions. The roles of the various parties are described throughout this document, but they are summarized and sometimes elaborated upon in this section. This section concludes with a description of a “Memorandum of Understanding” (subsection (g) below), which will set forth the understanding of the Resource Management Agencies, the County, the California Native Plant Society (“CNPS”), the private parties who intend to enter into the Initial Furnace Transactions, and each other party who receives either a Credit Verification Letter or a Compliance Verification Letter in the future (collectively, the “MOU Parties”) regarding their respective roles in the CHMS.

(a) Resource Management Agencies. As the Resource Management Agencies, the Forest Service and the BLM have land use jurisdiction over land within the CHMA. The responsibilities of the Resource Management Agencies under the CHMS are summarized as follows:

(i) Coordinate the mining and land use regulations administered by the Resource Management Agencies with the provisions of the CHMS to facilitate the use of the CHMS by applicants to obtain ESA Compliance, such as by coordinating the administration of the Federal Land Plans with the CHMS.

(ii) In processing applications for mining activities, accept compliance with the CHMS as compliance with the Federal Land Plans, the ESA, and other federal laws and regulations with respect to impacts on the Carbonate Plants (subject, however, to review under NEPA).

(iii) Manage those portions of the Habitat Reserve that fall under their respective jurisdictions in a manner that is consistent with the CHMS (see Section 9(f)).

(iv) Facilitate federal land designations as contemplated by the CHMS to help form the Habitat Reserve (see Section 8(a)).

(v) Facilitate federal land purchases and exchanges as contemplated by the CHMS to help form the Habitat Reserve (see Section 8(b), (e), and (f)).

(vi) Facilitate acceptance by the federal government of title to privately owned land contributed to the Habitat Reserve under the CHMS.

(vii) Notify the MOU Parties if at any time Congress or the Secretary of the Interior determines that all or any part of the Habitat Reserve is no longer necessary to provide for the conservation of the Carbonate Plants and, as a consequence, an existing mineral withdrawal or other use restriction has been removed as to such land.

(viii) Work with the USFWS to develop and implement a plan for monitoring the effectiveness of, compliance with, and biological conditions under the CHMS.
Monitor the implementation of the CHMS for consistency with the CHMS Biological Opinion and immediately report to the MOU Parties any potential or realized inconsistencies.

Monitor the CHMA for conditions that could require re-initiation of the CHMS Section 7 Consultation and immediately report any such conditions to the MOU Parties.

In the event of a re-initiation of the CHMS Section 7 Consultation, suspend or partially suspend operation of the CHMS, if required by Section 7(d) of the ESA, and report the suspension to the MOU Parties (see Section 14(e)).

(b) Forest Service. The Forest Service has the following responsibilities in addition to those under subsection (a) above:

(i) Maintain and update the Habitat Inventory in accordance with Section 14(d).

(ii) Administer the Credit Registry and related functions in accordance with Section 10(f).

(iii) Carry out the regular reporting functions for the CHMS described in Section 14(b).

(iv) Receive, maintain, and make publicly available records and reports it receives pursuant to the CHMS, such as revegetation reports (see the Revegetation Guidelines) and various monitoring reports (see Section 14).

(v) Manage those Category D lands that fall under its jurisdiction in a manner that is consistent with the CHMS (see Section 9(f)).

(c) County. The County has jurisdiction over mining reclamation under SMARA, and it has land use jurisdiction over the private lands located within the CHMA. The County shall adopt standardized conditions of approval for addressing impacts to Carbonate Plants by proposed mining and reclamation projects in a manner that is consistent with the CHMS. Such conditions of approval shall apply under SMARA, the County land use ordinances, and CEQA, subject to the approval of the Board of Supervisors on a project-by-project basis. Specifically, such conditions of approval shall provide for (i) habitat compensation requirements consistent with the Compensation Requirements set forth in the CHMS (see Section 11) and (ii) revegetation standards and incentives consistent with the Revegetation Guidelines and the revegetation incentives set forth in the CHMS (see Section 12 and the Revegetation Guidelines).

(d) USFWS. The responsibilities of the USFWS under the CHMS derive from the ESA and are as follows:

(i) Issue the CHMS Biological Opinion in response to the CHMS Section 7 Consultation.

(ii) Work with the Resource Management Agencies to develop and implement a plan for monitoring the effectiveness of, compliance with, and biological conditions under the CHMS.

(iii) Respond to any re-initiation of the CHMS Section 7 Consultation in a manner that is consistent with the ESA and the CHMS Biological Opinion (see Section 14(e)).

(iv) In the event of a re-initiation of the CHMS Section 7 Consultation, advise the Resource Management Agencies of any obligations with respect to Section 7(d) of the ESA that require any suspension of operations.

(e) CNPS. CNPS has been an active participant in the Working Group, representing the conservation interests of the Carbonate Plants and assuring that from their perspective, the CHMS provides a good and practical solution to the conflicts between the public economic interest in ongoing carbonate mining and the public interest in conserving the Carbonate Plants within the CHMA.

(f) Applicants. The private applicants that receive ESA Compliance under the CHMS must do as follows in order to maintain ESA Compliance:

(i) Remain in compliance with the ESA with respect to the covered mining project, taking into account that Covered Activities on the subject land are deemed to be in compliance with the ESA.

(ii) Remain in substantial compliance with all Reclamation Regulations that apply to the covered mining project.
(iii) Conduct any future mining operations occurring within the area covered by the CHMS prior to the consummation of the Initial Furnace Transactions in a manner which is consistent with the terms of the CHMS.

(iv) Comply with the terms of any Use Restriction Agreements entered into by the applicant under the CHMS in connection with making Relocatable Contributions (see Section 10(b)(ii)).

(v) Comply with the terms of any Surface Entry Restrictions entered into by applicant under the CHMS in connection with making surface right Reserve Contributions (see Section 10(b)(iii)).

(g) Memorandum of Understanding. The MOU Parties shall enter into a Memorandum of Understanding (the “MOU”) to set forth the understanding of the MOU Parties regarding their respective responsibilities and activities under the CHMS. In the event of any conflict between the provisions of this document and the provisions of the MOU, the MOU shall control. The MOU will be signed by the MOU Parties as follows:

(i) Prior to initiation of the CHMS Section 7 Consultation, the Resource Management Agencies, the County, CNPS, and the private parties who intend to enter into the Initial Furnace Transactions will sign the MOU.

(ii) Effective upon the Activation of the Furnace Unit, the private parties who are part of the Initial Furnace Transactions as applicants for ESA Compliance will sign the MOU again, this time in their status as parties obtaining ESA Compliance. Such parties shall sign a separate amendment for each Compliance Verification Letter they are to obtain.

(iii) Subsequent applicants for ESA Compliance (after the applicants who are part of the Initial Furnace Transactions) will sign the MOU by means of an amendment prior to obtaining ESA Compliance. Such parties shall sign a separate amendment for each Compliance Verification Letter they are to obtain.

(iv) Parties making Reserve Contributions will sign an amendment to the MOU prior to obtaining Conservation Credits with respect to such contributions. Such parties shall sign a separate amendment for each Credit Verification Letter they are to obtain.

14. Monitoring

Several monitoring mechanisms are built into the CHMS to assure that it achieves its economic, conservation, and regulatory objectives.

(a) Monitoring under Section 7. Pursuant to Section 7 of the ESA, the Resource Management Agencies and the USFWS shall work together to develop and implement a plan for monitoring the effectiveness of, compliance with, and biological conditions under the CHMS. Such monitoring may overlap with the monitoring provisions described in the following subsections.

(b) Regular reporting. The following regular review and reporting activities shall be conducted under the CHMS:

(i) The Forest Service shall make Credit Registry information available to the public (see Section 10(f)).

(ii) The Forest Service shall conduct an annual review of the progress of the CHMS over the prior fiscal year (October 1 to September 30), report the following information to the MOU Parties and the USFWS, and make such information available to the public upon request, by each January 31 following the fiscal year under review:

(A) Changes in land categories over the calendar year (e.g., “D-to-E,” “D-to-M2,” “M2-to-M1,” etc.);

(B) For each Administrative Unit, the Conservation Value contained within each land category;

(c) A summary of Conservation Credit transactions over the year;

(d) A summary of federal land designations, purchases, and exchanges over the year; and

(e) Any amendments to the CHMS (see Section 17(b)) that have been made during the year.
(c) Reserve formation. The Forest Service shall monitor the contribution of land within Priority Areas. Once all Stage 1 Priority Area lands within an Administrative Unit have been added to the Reserve, the Forest Service shall report to the MOU Parties and the USFWS that such Unit has been Activated (see Section 9(b)(i)).

(d) Habitat Inventory. The Habitat Inventory is intended to reflect the existence of Occupied Habitat, Suitable Habitat, Revegetated Habitat (including the level of success criteria met), and Other Beneficial Habitat, as those terms are more particularly defined in Appendix C, the box on page 18, and in Section (a) of the Revegetation Standards. The issuance of Conservation Credits (see Section 10(f)) and the measurement of Compensation Requirements (see Section 11(a)) are based upon the Habitat Inventory, and such actions are not reviewable based upon subsequent changes in the Habitat Inventory. However, the Habitat Inventory shall be updated from time-to-time by the Forest Service based upon new information, and changes in the Habitat Inventory will affect subsequent issuances of Conservation Credits and ESA Compliance. The circumstances under which the Forest Service shall make changes to the Habitat Inventory are as follows:

(i) Automatically upon issuance of a Compliance Verification Letter. The Forest Service shall automatically change the Habitat Inventory on land covered by a Compliance Verification Letter upon issuance of such letter to show the subject land as nonhabitat (in anticipation of disturbance of any existing habitat).

(ii) On initiative of the applicable Resource Management Agency. The Forest Service shall change the Habitat Inventory on federal lands (including lands subject to unpatented claims) whenever the applicable Resource Management Agency develops or otherwise obtains new biological information that it deems reliable that indicates a change is warranted based upon the habitat definitions set forth in Appendix C.

(iii) On initiative of the County. The Forest Service shall change the Habitat Inventory on private lands under the jurisdiction of the County whenever the County develops or otherwise obtains new biological information that it deems reliable that indicates a change is warranted based upon the habitat definitions set forth in Appendix C.

Some examples of reasons that the Habitat Inventory may be inaccurate and require adjustment are:

- Inaccuracy of prior survey information.
- Naturally-occurring changes in environmental conditions and/or species dispersal patterns.
- Occurrence of undisturbed habitat on lands mapped as M1 or M2 when the underlying landowner or claim holder takes the necessary steps to obtain credit for them in accordance with Section 11(f).
- Meeting of revegetation success criteria (resulting in new Revegetated Habitat; see box on p. 18 and Section (a) of the Revegetation Guidelines).
- Habitat disturbance, whether authorized or unauthorized.

(e) Section 7 re-initiation. Under certain circumstances, the ESA and its regulations may require that the CHMS Section 7 Consultation be re-initiated and the CHMS Biological Opinion be reassessed. The conditions for re-initiating consultation set forth in the Section 7 regulations are:

- The amount or extent of incidental take is exceeded [not applicable to plants];
- New information reveals effects of the agency action that may affect listed species or critical habitat in a manner or to an extent not considered in [the biological] opinion;
- The agency action is subsequently modified in a manner that causes an effect to the listed species or critical habitat not considered in [the biological] opinion; or
- A new species is listed or critical habitat designated that may be affected by the action.
Such re-initiation should be avoided, if at all possible, in order to maintain the regulatory certainty and streamlining provided by the CHMS. In the event that any Resource Management Agency determines that a condition exists or may be developing that could trigger re-initiation, such party shall report the condition to the MOU Parties. The MOU Parties may then consider whether to take any action to avoid or eliminate the condition that could lead to re-initiation. In the event that the triggering condition is the proposed or new listing of a species that may be affected by mining projects in the CHMA, then the MOU Parties may include in its consideration the possibility of amending the CHMS in accordance with Section 17(c) to address such species.

In the event re-initiation occurs in spite of any efforts of the MOU Parties, the USFWS has the authority under Section 7(d) of the ESA to issue a letter to the Resource Management Agencies stating that they have an obligation to suspend operations covered by the CHMS Biological Opinion. In such event, the Resource Management Agencies shall suspend operation of the CHMS only to the extent that it determines that Section 7(d) of the ESA requires such suspension. The Resource Management Agencies shall limit any such suspensions to the greatest extent possible (such as to only certain geographical areas, species, and/or types of activities) while still achieving compliance with the ESA.

The USFWS shall work closely with the MOU Parties during any re-initiation of the CHMS Section 7 Consultation in an effort keep the CHMS intact with as little disruption as possible to the expectations of the various MOU Parties.

15. Funding

Two types of costs require funding under the CHMS. The primary cost is that of acquiring land for the Habitat Reserve. The secondary type of cost is for administration of the CHMS, specifically for carrying out the various monitoring and reporting functions, maintaining the Habitat Inventory, maintaining the Credit Registry, and managing the Habitat Reserve. The balance of this section describes how these various costs will be funded.

(a) Reserve formation. All contributions of land to the Habitat Reserve involve a societal cost—the cost of foregoing uses of the land other than conservation in perpetuity. It is the intent of the CHMS that this cost be shared by the public sector and the private sector.

The following are the various ways, direct and indirect, that the cost of acquiring land for the Habitat Reserve shall be borne, with the first four constituting the public sector’s share, and the last one constituting the private sector’s share:

(i) Federal designations of unclaimed land;

(ii) Federal lands offered in exchange for claims or private land;

(iii) Federal Land & Water Conservation Fund (the “LWCF”) (the Resource Management Agencies have made application for funding from this source);

(iv) Special congressional appropriations (see Section 16(a)); and

(v) Reserve Contributions made for Conservation Credits (which indirectly constitutes compensation to obtain ESA Compliance).

(b) Administrative costs. The administrative costs of the CHMS are likely to be small in comparison to the land acquisition costs, but provision must be made to cover these costs if the CHMS is to succeed. Administrative costs will be covered as follows:

(i) The Resource Management Agencies shall commit the federal budgetary resources necessary to manage the Habitat Reserve as part of their ordinary responsibilities for the lands under their jurisdiction;

(ii) The Forest Service shall commit the additional budgetary resources necessary to carry out the various monitoring and reporting functions required of it by the CHMS, maintain the Habitat Inventory, and maintain the Credit Registry; and

(iii) If the Forest Service deems it necessary, it may obtain supplemental funding for its administrative functions by charging credit registration fees in accordance with Section 10(f) for the handling of vari-
ous types of Conservation Credit transactions; the Forest Service shall set any such fees from time-to-time to cover actual uncovered costs and shall report to the MOU Parties the calculations used to size any such fees; the Forest Service may delegate some or all of its administrative functions, including any collection of credit registration fees, to another agency or to a private party.

16. Legislation

Federal legislation would be helpful in three primary ways for implementing the CHMS: to fund federal land purchases, to streamline the federal land exchange process, and to give the Resource Management Agencies the authority to permanently dedicate federal land to the Habitat Reserve. This section further describes the legislation that may be sought.

(a) Funding for land purchases. Although a significant amount of unclaimed federal land is available to set aside for the Habitat Reserve, much of the best habitat for the Carbonate Plants corresponds with claimed or privately owned land containing mineral deposits. Demand for ESA Compliance will result in some level of Reserve Contributions that will help in the addition of land from the Priority Areas to the Reserve, but such demand is insufficient to meet the objective of adding to the Reserve, in contiguous blocks, 100% of the Occupied Habitat and 85% of the Suitable Habitat contained within each Priority Area (see Section 9(b)), even in the very long term. Adding such Priority Area lands to the Reserve will require the federal government to purchase a significant amount of land (see Section 8(b)).

Since most current mining activity is within the Furnace Unit, and the Furnace Unit contains some of the best habitat for the Carbonate Plants, it is the intent of the MOU Parties to facilitate the addition of Furnace Unit Priority Areas to the Habitat Reserve as soon as possible after adoption of the CHMS and the issuance of the CHMS Biological Opinion. Fortunately, some of the best habitat for Carbonate Plants in the Furnace Unit is owned or claimed by parties who are willing, at least in concept, to sell their land or claims as part of the Initial Furnace Transactions (see Sections 4(d)(iii), 9(d)).

Some federal funding may be available administratively through the LWCF, and the Resource Management Agencies have applied for such funds. If such funds become available, they could play an important role in land purchases. The key to adding Priority Area lands to the Reserve (see Section 9(b)) is to be able to “escrow” several transactions that can all close at once. Federal legislation may be introduced to specifically appropriate LWCF monies and to streamline the process for applying such monies to complete the purchase of Priority Area lands. Some appropriated funds may be earmarked for one or more particular purchases, while others may be part of an “opportunity fund” available for miscellaneous purchases as the opportunities arise to purchase important habitat land at a good price.

(b) Assistance with implementing purchases and land exchanges. The administrative process required to consummate the purchase of land with federal funds or federal land exchanges involves land appraisals, mineral valuations, and claims validations that can require a significant amount of time to complete. The CHMS could benefit from legislation that streamlines both (i) the process of using any specially-appropriated funds obtained from the legislation described in subsection (a) above and (ii) the land exchange process for transfers of federal land to the private sector in exchange for the transfer of private habitat lands to the Resource Management Agencies for the Habitat Reserve. Such legislation could also direct specific transactions to occur at specified prices or exchange values. Such legislation can increase the contribution that federal land purchases and exchanges can make to the CHMS.

(c) Permanent reserve dedication. Finally, it would be desirable to increase the certainty of permanent protection of the Habitat Reserve by providing a means for permanent dedication of federal lands under the jurisdictions of the Forest Service and the BLM to the Habitat Reserve. Such dedication would presumably consist of a combination of a permanent mineral withdrawal and a permanent land allocation to management consistent with the intended purposes for the Habitat Reserve under the CHMS. Ideally, under such
legislation, the processes established in the CHMS would serve as the processes for determining what land is appropriate a legislative Habitat Reserve designation.

All of the MOU Parties have a strong interest in supporting federal legislation as outlined above. The CHMS provides no formal process for pursuing such legislation, but leaves it to the MOU Parties to do so.

17. Amendment

It is important that certain kinds of changes can be made to the CHMS that will give it the ability to adapt to new information and circumstances without an unduly burdensome process. It is equally important that the CHMS be fundamentally stable, reliable, and predictable in order to maximize its integrity and usefulness to all of the MOU Parties. To strike a balance between flexibility and stability, the balance of this section describes a two-tier CHMS modification process, followed by a description of how new ESA listings can be addressed under the CHMS.

(a) Administrative changes. Throughout the CHMS are references to adjustments and modifications that may be made by the Resource Management Agencies in their discretion. Such actions are to be regarded as part of the normal operation of the CHMS and not as amendments so long as they are consistent with the other provisions of the CHMS. Examples of such actions include, without limitation, modification of the Habitat Inventory, changes in the Credit Registry procedures, and determination of the means of making CHMS data available to the public.

(b) Amendments. Any modification to the CHMS that does not qualify as an administrative change under subsection (a) above shall be regarded as an “Amendment.” Amendments shall require (i) the approval of all MOU Parties that could be adversely affected by the proposed Amendment and (ii) the concurrence of the USFWS. Certain Amendments may result in a condition that triggers re-initiation of the CHMS Section 7 Consultation, in which case the Amendment would not become effective unless it is also incorporated into a revised, favorable CHMS Biological Opinion as a result of the re-initiation process.

(c) Addressing new ESA listings. If additional species (other than the Carbonate Plants) that occupy portions of the CHMA are proposed for listing or are listed as threatened or endangered under the ESA, and mining activities addressed by the CHMS may affect such species, then the MOU Parties may elect to initiate an Amendment process to attempt to address such additional species under the CHMS. The following provisions would apply to such a process:

(i) Upon proposal of such a species for listing, the MOU Parties may work with the Resource Management Agencies to conference with the USFWS and to obtain a conference opinion that upon the listing of such species, any take of the species pursuant to the CHMS shall not jeopardize the continued existence of such species. The MOU Parties may choose, by unanimous agreement among the affected parties, to modify the CHMS by an Amendment in order to help achieve such a conference opinion. In accordance with the ESA and its regulations, upon the listing of the species, such a favorable conference opinion would automatically be deemed to be a new biological opinion resulting from a re-initiation of the CHMS Section 7 Consultation, and suspension of the operation of the CHMS would be avoided.

(ii) Any Amendment that is made outside of the process described in subsection (i) above would require re-initiation of the CHMS Section 7 Consultation, but the availability of ESA Compliance for the Carbonate Plants under the CHMS would not be suspended, except potentially where the newly-listed species may be affected (see subsection (iii) below).

(iii) The availability of ESA Compliance under the CHMS may, if required under Section 7(d) of the ESA, be suspended in areas in which the newly-listed species may be affected.

(iv) Any proposed Amendment shall attempt to integrate any land under Habitat Reserve designations and management for the newly-listed species into the existing CHMS framework to the greatest extent possible.

(v) In deliberating on the revised CHMS Biological Opinion, the USFWS shall take into account and give credit for habitat of the newly-listed species
that is or will be included in either \((a)\) the Habitat Reserve or \((b)\) other permanent reserve or conservation areas within the CHMA that are protected by conservation easements or pursuant to other conservation planning efforts (such as the “West Mojave Plan,” a multi-jurisdictional habitat conservation plan under preparation, with the BLM as the federal lead agency).
Appendix A: Glossary of Terms

All of the terms in this glossary are also defined in the section of the CHMS indicated in parenthesis. In some cases, the definitions in the body of the CHMS are more detailed and are only summarized here. In the event of any conflict between a definition in the body of the CHMS and a definition in this glossary, the definition in the body of the CHMS shall control.

Activated—the status of an Administrative Unit within which the required portions of the Stage 1 Priority Areas have been added to the Habitat Reserve, thereby allowing ESA Compliance to be obtained for mining projects within such Unit under the CHMS (Section 9(b)(i))

ACV—abbreviation for Adjusted Conservation Value (Section 7(e))

Adjusted Conservation Value—the Conservation Value of an area adjusted by the Net Edge Adjustment for that area (Section 7(e); see also “ACV”)

Administrative Unit—a subarea of the CHMA established for purposes of administering the CHMS; there are five Administrative Units: White Mountain, Furnace, Helendale, Bertha, and Moonridge/Onyx (Section 6; see also “Unit”)

Amendment—a modification to the CHMS that does not qualify as an administrative change (Section 17(b))

BLM—the U. S. Department of Interior Bureau of Land Management (Section 1)

Carbonate Plants—the four species listed under the ESA that occur within the CHMA and are addressed by the CHMS (Section 1)

Category M1, Category M2, etc.—see the definitions in Section 5 and the box on page 14

CEQA—California Environmental Quality Act (Section 2(a)(vi))

CHMA—Carbonate Habitat Management Area (Section 1 & Figure 1)

CHMS—Carbonate Habitat Management Strategy, referring both to this document and the program it describes (Section 1 introduction)

CHMS Biological Opinion—the programmatic biological opinion rendered by the USFWS under Section 7 of the ESA for the CHMS (Section 3(b)(i))

CHMS Section 7 Consultation—the Section 7 Consultation between the Resource Management Agencies and the USFWS, which will result in the CHMS Biological Opinion (Section 3(b)(i))

CNPS—the California Native Plant Society (Section 13 introduction)

Compensation Ratio—the required ratio of Reserve Contribution requirement to the amount of habitat loss to be caused by a project, both measured in Conservation Units; the Compensation Ratio is 3:1 (Section 11(a))

Compensation Requirement—the number of Conservation Credits that must be given to obtain ESA Compliance for mining activities on a given parcel (Section 11(a))

Compliance Verification Letter—a concurrence letter acknowledging the satisfaction of the requirements for obtaining ESA Compliance with respect to a particular parcel of land (Section 11(e))

Connective Land—land added to the Reserve within a Priority Area sufficient to connect all of the Occupied Habitat and Suitable Habitat in that Priority Area into one contiguous patch (Section 9(b)(i))

conservation banking—obtaining Conservation Credits, either by making Reserve Contributions or by purchasing them from other private parties, and holding them for future use or sale rather than immediately using them to obtain ESA Compliance (Section 8(d))

Conservation Category—the conservation land use category, which is Category E (Section 5(b))
Conservation Credit—the “currency” of the CHMS given to private parties in exchange for Reserve Contributions; a Conservation Credit represents one Conservation Unit of Conservation Value (Section 7(a)).

Conservation Unit—the unit of measurement of Conservation Value under the CHMS (Section 7(a); see also “cu”)

Conservation Value—the value of land for the conservation of the Carbonate Plants, as measured in Conservation Units (Section 7 introduction & box on page 9; see also “CV”)

Contingent Contribution—a Reserve Contribution that is made contingent on either (i) ESA Compliance becoming available in a particular Administrative Unit (based upon the addition of the entire Stage 1 Priority Area to the Habitat Reserve) or (ii) approval of a Mining Plan for a particular project (Section 10(d))

County—County of San Bernardino (Section 1)

Covered Activities—mining activities that can obtain the benefit of ESA Compliance under the CHMS (Section 3(a))

Credit Holder—the registered owner of some number of Conservation Credits (Section 10(a))

Credit Registry—a database maintained by the Credit Registrar that tracks the creation, use, and transfer of Conservation Credits under the CHMS (Section 10(f))

Credit Verification Letter—a concurrence letter issued by the Forest Service that establishes the creation or transfer in ownership of a specified number of Conservation Credits (Section 10(f))

cu—abbreviation for Conservation Unit (Section 7(a))

CV—abbreviation for Conservation Value (Section 7 introduction)

edge—the line where land of one of the three type of land use categories (Mining Category, Reserve Category, or Uncommitted Category) meets another of the three types (box on bottom of page 15; Section 7(e)(ii))

ESA—federal Endangered Species Act of 1973, as amended (Section 1 introduction)

ESA Compliance—compliance with the ESA for Covered Activities with respect to the Carbonate Plants and any other listed species addressed by the CHMS in the future (Sections 3(b)(i), 11)

Federal Land Plan—a land use and management plan that covers Forest Service or BLM land within the CHMA (Section 2(a)(v))

Forest Service—the U. S. Department of Agriculture Forest Service (Section 1)

GIS—geographical information system (Section 4(b))

Habitat Inventory—the Forest Service’s official GIS database for the CHMS that identifies habitat types within the CHMA (Sections 7(c), 14(d))

Habitat Reserve—the reserve system for the Carbonate Plants to be formed pursuant to the CHMS (Section 1)

Initial Furnace Transactions—the initial transactions toward the addition of the Furnace Unit Stage 1 Priority Areas to the Reserve (Sections 4(d)(iii), 9(d))

Initial Habitat Reserve—the Habitat Reserve at the commencement of CHMS implementation, prior to any private Reserve Contributions under the CHMS (Sections 4(d)(i), 9(a))

LWCF—Land and Water Conservation Fund (Section 15(a)(iii))

Mining Category—any of the mining-related land use categories, which include Categories M1, M2, and F (Section 5(a))

Mining Law—the Mining Law of 1872, as amended (Section 1)

Mining Plan—a mining plan of operations (in the case of a claim on federal land) or a mining and reclamation plan (in the case of mining on private land) (Section 5(a)(i))

MOU—the memorandum of understanding setting forth the understanding of key parties regarding the responsibilities and activities of those parties with respect to the CHMS (Section 13(g))

MOU Parties—the Resource Management Agencies, the County, CNPS, the private parties who intend to enter into the Initial Furnace Transactions, and each
other party who receives either a Credit Verification Letter or a Compliance Verification Letter in the future (Section 13 introduction)

NEPA—National Environmental Policy Act (Section 2(a)(v))

Net Edge Adjustment—an adjustment to the Conservation Value of an area used to arrive at Adjusted Conservation Value (Section 7(e))

Occupied Habitat—land designated on the Habitat Inventory as occupied habitat for one or more of the Carbonate Plants; excludes Revegetated Habitat (box on page 14)

Other Beneficial Habitat—land that is designated on the Habitat Inventory as undisturbed natural land that provides some geomorphological, hydrological, or habitat configuration benefit to the Carbonate Plants; excludes all other habitat categories that provide some benefit to the Carbonate Plants (box on page 14)

Permanent Contribution—a Reserve Contribution in the form of an absolute, permanent grant of privately owned land or relinquishment of a mining claim (Section 10(b)(i); see also “Relocatable Contribution”)

Priority Area—any Stage 1 Priority Area or Stage 2 Priority Area (Section 9(b))

Reclamation Regulations—collectively, all existing reclamation requirements outside of the CHMS that apply to a given mining operation, which may include, depending on location and other factors, reclamation standards under SMARA; a Memorandum of Understanding between the Forest Service, BLM, and the State of California signed October 1992 regarding the application of SMARA on federal lands in California; the Forest Service regulations under 36 CFR 228; and the 1991 Big Bear District Mining Reclamation Standards (Section 11(c))

Relocatable Contribution—a Reserve Contribution in the form of an agreement not to disturb certain land and to allow it to be managed as part of the Habitat Reserve, but reserving the right to substitute a different Reserve Contribution in the future (Section 10(b)(ii); see also “Permanent Contribution”)

Reserve—the Habitat Reserve (Section 1)

Reserve Contribution—a contribution to the Habitat Reserve in the form of either (i) granting privately owned land, (ii) abandoning a mining claim, (iii) restricting a mining claim or privately owned land for conservation purposes subject to later redemption by offering equivalent Conservation Value in another form, or (iv) granting or relinquishing the surface rights of privately-owned land or a mining claim while retaining the right to conduct subsurface mining (box on page 9; Section 10(b))

Resource Management Agency—the Forest Service or the BLM, each with respect to the land under its jurisdiction (Section 1)

Revegetated Habitat—mining land that has been revegetated and meets all of the requirements for obtaining conservation credit set forth in the Revegetation Guidelines (box on page 14; Section (a) of Appendix E)

Revegetation Guidelines—the “Guidelines and Success Criteria for Revegetation and Carbonate Plant Introductions” set forth in Appendix E (Section 8(g))

SBNF—the San Bernardino National Forest (Section 1)

SMARA—the California Surface Mining and Reclamation Act of 1975, as amended (Section 2(c)(iv))

Stage 1 Priority Area—an area within the CHMA so designated on Map 3 in Appendix I; certain portions of the Stage 1 Priority Areas within a Unit must be added to the Habitat Reserve for such Unit to be Activated (Section 9(b); see also “Priority Area”)

Stage 2 Priority Area—an area within the CHMA so designated on Map 3 in Appendix I; although there is no requirement that Stage 2 Priority Areas be added to the Habitat Reserve before loss of habitat may occur within a Unit, no loss of habitat may occur under the CHMS within any Stage 2 Priority Area (Section 9(b); see also “Priority Area”)

Suitable Habitat—land designated on the Habitat Inventory as suitable habitat for one or more of the Carbonate Plants; excludes Occupied Habitat and Revegetated Habitat (box on page 14)

Surface Entry Restriction—an instrument that is recorded against fee-owned land or a mining claim re-
stricting the surface entry rights of the landowner or claim holder; a Surface Right Restriction is a method of making a Reserve Contribution of the surface of land (Section 10(b)(iii))

Uncommitted Category—any of the land use categories that do not indicate a commitment to either mining activities or the Reserve, which include Categories D, P, and X (Section 5(c))

Unit—an Administrative Unit (Section 6)

Use Restriction Agreement—an agreement used to make a Relocatable Contribution whereby the contributor agrees not to disturb a parcel of land during the term of the agreement (Section 10(b)(ii))

USFWS—United States Fish and Wildlife Service (Section 1)

West Mojave Plan—a multi-jurisdictional habitat conservation plan under preparation, with the BLM as the federal lead agency (Section 17(c)(v))

Working Group—certain mining interests, conservation interests, and government agencies that have been working together since October 1999 to develop the CHMS (Section 1)
Appendix B: Species Accounts

1. Cushenbury buckwheat

Cushenbury buckwheat—Eriogonum ovalifolium Nutt. var. vineum (Stokes) Jepson

(a) Author. Andrew C. Sanders, Herbarium, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124

(b) Management status. Federal: Endangered; California: S1.1, G5T1 (CDFG, 1998); CNPS: List 1B, RED code 3-3-3 (Skinner and Pavlik, 1994)

(c) General distribution. Cushenbury buckwheat is endemic to California and is restricted to dry calcareous (primarily limestone) slopes of the northern San Bernardino Mountains (Reveal, 1993). Most populations are on lands within the boundary of the San Bernardino National Forest, but the taxon does extend slightly onto BLM and private lands along the southern edge of the WMPA. The overall range of this plant extends from White Mountain southeast to Mineral Mountain on the north side of Rattlesnake Canyon.

There is a recent report of what is possibly this plant from the southern Sierra Nevada Mountains, but the identification has not yet been confirmed. This discovery is discussed in greater detail in the Natural History section, below.

(d) Natural history. Cushenbury buckwheat (Polygonaceae) was originally described as a distinct species, Eriogonum vineum, by Small (1898) from plants collected near Rose Mine by S.B. Parish (#3170) in 1894. At that time Small confused it with plants from farther north and cited a specimen from Oregon as representing this taxon also. It is now believed that this plant is endemic to the San Bernardino Mountains, with the possible exception of a small population in the southern Sierra Nevada.

Cushenbury buckwheat is a long-lived prostrate to mound-forming shrub that typically occurs on rocky slopes, often in cracks on bedrock or on otherwise stable slopes, but is also known from deeper soils derived from decomposed carbonates. It is typically not found in disturbed areas (either naturally or by man), nor is it usually found along washes or on canyon bottoms, unlike Parish’s daisy (Erigeron parishii), another limestone endemic that often occurs nearby. But, it has occasionally been found colonizing abandoned haul roads, as at Furnace Canyon (pers. obs., 1998). It is the only variety of Eriogonum ovalifolium found in the San Bernardino Mountains, though other varieties occur elsewhere on similar substrates. It has never been found away from carbonate substrates and appears to be more common on the higher value limestones than it is on the economically unimportant dolomites. It is thus, based on information from a survey done for a consortium of mining companies in 1992 (Tierra Madre, 1992), particularly vulnerable to destruction by limestone mining (Sanders, 1992).

Cushenbury buckwheat plants are very compact with short woody stems spreading a few centimeters over the ground. They have been described as “forming large silver mats” resembling “boulders of the limestone it occurs on” (T. Krantz, label notes, UCR). The foliage mounds seldom rise more than 4 in. (10 cm) above the surrounding rocks or soil. However, when the plants begin flowering, they send up inflorescences 1-5 in. (2-12 cm) above the foliage. The several to many short woody stems spread and ascend over a very small patch of ground from a thick woody base above a deep and well-developed woody taproot. The short branches hold many small round-obovate leaves with blades 0.16-0.5 in. (4-12 mm) long and slightly narrower. The petioles are distinct and ca. 0.12-0.24 in. (3-6 mm) long. The foliage is densely covered with tangled, white, rather felty, hairs on both surfaces. The leaves densely cover the upper parts of the stems and are densely grouped so that the ground is generally not visible through the plant. This overall plant density is partly caused by the dried leaves which do not fall from the plant but simply turn a dark brown color and cling to the older parts of the stem. This presumably provides insulation for the plant as well as added protection from water loss through the stems.
Cushenbury buckwheat seems to share many general ecological characteristics with the other varieties of *E. ovalifolium*. It is a perennial of open areas and appears intolerant of extensive shading, preferring full sunlight, and typically occurs between shrubs rather than under them (White, 1997). *Eriogonum ovalifolium* is not a species well adapted to competing for light, but it is very competitive on sites where tall and fast growing species are excluded by moisture deficiencies, wind, winter cold, or nutrient deficiencies. The compact “cushion” habit probably serves to reduce moisture loss on windy ridges as is true for other species of similar life form (Walter, 1973). The short annual growth intervals and consequent low stature makes all races of *E. ovalifolium* poor competitors on sites that are capable of supporting tall or dense vegetation. However, sites where moisture stress is combined with high insolation are highly favorable for plants such as this one. The nutrient deficiencies of limestone soil, exacerbated by the high pH which interferes with mineral uptake, doubtless serve to further reduce competition by fast growing species.

Winter cold is another major ecological factor that affects interior and montane species in the temperate zone. Cushenbury buckwheat, and other low growing cushion species, may be regularly covered by snow during the period of the year when soil moisture is unavailable because the ground is frozen, and when, in arid areas, the humidity of the air may still be very low. When covered with snow, Cushenbury buckwheat is subjected to even less moisture stress than it would be if exposed to the dry air. Under snow, the relative humidity is at virtually 100% and wind effects are excluded. Even when exposed, the low dense form of the plant shelters much of it from direct wind effects. The dense covering of wool on the leaves is evidence that moisture and not light is a major controlling factor for this species. Such a woolly covering will greatly reduce the amount of light striking the chloroplasts in the leaf tissue, but this tomentum also forms a layer of dead air at the leaf surface and may reduce water loss due to wind.

The inflorescence consists of a leafless peduncle (flowering stem) that supports a group of involucres that form a single head-like unbel of cream-white to reddish flowers, with green to reddish midribs, at the tip. The flowers are perfect (possess both male and female parts). Cushenbury buckwheat is distinguished from other mat-forming buckwheats in the San Bernardino Mountains by its compact cushion-form habit, large solitary heads of cream-white to maroon flowers, and round-obovate leaves. There are two similar buckwheat species in the general region. Perhaps the most grossly similar species in the area is southern mountain buckwheat (*Eriogonum kennedyi* var. *austromontanum*), which occurs in a different habitat (pebble plains) and which has narrower leaves and smaller heads. Its general lifeform is very similar to Cushenbury buckwheat. Skree buckwheat (*Eriogonum saxatile*) is also quite similar, and occurs in the same general areas, but has a more open form and occurs primarily on loose granitic soils on slides and along washes. It is also less long-lived and is seldom conspicuously woody. Its leaf morphology is very similar, but its open cymose inflorescence is quite different from the compact head of Cushenbury buckwheat.

Based on a relatively small sample of herbarium specimens, it appears that Cushenbury buckwheat fruits ripen primarily in about July following the main May-June flowering period, but must ripen later for later flowerings (see below). This would make the seeds ready for germination at the time of any summer rains in August/September, assuming the seeds do not remain dormant for a lengthy period following dispersal. It appears that the relatively large perianth may dry around the fruit, with the achenes remaining attached to the receptacle, and that this whole unit is involved in dispersal, with the dried tepals acting as wings. Wind is thus probably important for local dispersal. Wind is not, however, very effective over long distances. Seed dispersal has not been studied in this species (or variety), but Stokes (1936) thought that birds may play a role in the dispersal of all *Eriogonum* seeds based on various observations of birds and their behaviors. She thought that seeds stored in the crop of a bird killed by a predator might serve to establish new populations in areas distant from existing populations. She also mentioned wind, rain and streams as dispersal agents, but presented no data to support these ideas. Given the extremely restricted distribution of Cushenbury buckwheat, it is not clear that long-dis-
tance dispersal has ever occurred and it certainly does not appear to be a common phenomenon. The rest of the varieties of *E. ovalifolium* occur north of the Mojave Desert, such as in the Inyo-White Mtns. and Sierra Nevada (Reveal, 1968) as well as through the Great Basin (e.g., Kartesz, 1988; Welsh et al., 1987; Reveal, 1968). It thus does appear that long distance dispersal occurred at some point, unless there was formerly suitable habitat across the Mojave Desert. There are scattered limestone outcrops on the Mojave Desert that would have supported pinyon woodland when, during the Pleistocene, this more mesic vegetation occupied what are now desert flats (Raven and Axelrod, 1978). These limestone hills could perhaps have served as stepping stones across the desert for populations of *Eriogonum ovalifolium*. It should also be noted that *Eriogonum ovalifolium* in general is not restricted to limestone. Other varieties of the species commonly occur on granite or general alluvium in sagebrush scrub (Reveal, 1968; Welsh et al., 1987). Thus it is possible that this taxon entered the range on other substrates, but then became restricted to limestone by competitive exclusion and subsequent refinement of existing adaptations.

The flowers are relatively large and are clustered into conspicuous head-like umbels. The flowers fade to pink or red at maturity (i.e., probably after pollination) and primarily bloom in May and June. There can be later flowering, for example in September (e.g., Derby and Krantz, s.n., UCR), but the extent of such late flowering or its environmental triggers are unknown. The flowers often dry to a yellowish color in herbarium specimens, but whether this may reflect the original color of some populations is unknown and unlikely. Few collectors of this species appear to bother recording flower color. White (#4012, UCR) has recorded the color of young flowers as “dull white w/reddish vein at centers of “petals” and reddish anthers”. Maile Neel (pers. comm.) reports that there is flower color variation within populations and that fresh flowers vary from creamy white to yellowish and that some are pinkish to maroon even when newly opened. She also reports that not all individuals have flowers that turn reddish in age. Clearly, there is need for further study of the trends in flower color in this plant.

Pollination of this plant has only recently been studied, and small insects are almost certainly its pollinators (S. Morita, pers. comm., 1998). The flower color changes to red suggest that the pollinator may be a bee, but such have rarely been observed on the species and Morita (pers. comm., 1998) thinks the pollinators may be generalist flower visitors, rather than a specialist such as a bee. In the summer of 1998 Morita observed nearly 100 insect species visiting this plant, including potential pollinators, plant feeders and others. She noted that because it is relatively late flowering, it is one of the few nectar sources available in its habitat at the time it flowers and so may be heavily visited for that reason. The generalists that are potentially pollinators included many flies, particularly tachinids and bee-flies (Bombylidae), but also many smaller species, such as chloropids. A small species of bee-fly was locally common on the flowers. Two species of small solitary bees (Andrenidae and Halictidae) were also seen visiting, but these were very few (Morita, pers. comm., 1998). Exactly which species serve as effective pollinators has not yet been determined.

Among the plant feeders present were a leaf beetle (Chrysomelidae) which was seen eating the flowers, soft-winged flower beetles (Dasytidae) which were present in the flowers, and various hemipterans, including the small milkweed bug (*Lygaeus*), various plant bugs (Miridae), and stink bugs (Pentatomidae). Grasshoppers (Acrididae) and their nymphs were also present and probably feed on the foliage of the Cushenbury buckwheat.

(e) Habitat requirements. This taxon is apparently restricted to carbonate slopes on the north side of the San Bernardino Mountains. As noted above, it seems to display a preference for limestone rather than dolomite, but this needs confirmation. It also seems to prefer stable slopes with bedrock outcropping, and is rarely found on unstable slopes or along active washes. It can be locally common where it is found, but more commonly is present as scattered individuals. Cushenbury buckwheat occurs primarily in pinyon-juniper woodland but also descends into Joshua tree woodland, mixed desert and blackbrush scrub and extends upward into Jeffrey pine-western juniper woodland (Munz, 1974; Skinner and Pavlik, 1994; Gonella
Among its typical associates are: single-needled pinyon (*Pinus monophylla*), big-berried manzanita (*Arctostaphylos glauca*), curl-leaf mountain-mahogany (*Cercocarpus ledifolius*), Shockley’s rock cress (*Stipa pinetorum*), yellow rabbitbrush (*Chrysothamnus viscidiflorus*), rubber rabbitbrush (*C. nauseosus*), big sagebrush (*Artemisia tridentata*), pine needlegrass (*Stipa pinetorum*), canyon live-oak (*Quercus chrysolepis*), nevada forsellesia (*Forsellesia nevadensis*), green Mormon tea (*Ephedra viridis*), blackbrush (*Coleogyne ramosissima*), Coville’s dwarf abronia (*Abronia nana covillei*), yellow cryptantha (*Cryptantha confertiflora*), Utah juniper (*Juniperus osteosperma*), small-cup buckwheat (*Eriogonum microthecum*), and Parish’s daisy (*Erigeron parishii*).

Based on specimens at UCR, populations occur at elevations between 4800 and 6500 ft. (1450 and 1982 m), though Munz (1974) reports “ca. 5000-5500 ft.” (1500-1675 m) and Reveal (1993) reports 1500-2100 m (5000-7000 ft.). Recent plot-based sampling has found it between 4680 and 7840 ft. (M. Neel, pers. comm.), and Melody Lardner (pers. comm.) reports that the Forest Service has the species mapped up to 8100 ft. elevation.

(f) Population status. Cushenbury buckwheat is naturally very restricted in its distribution, but has additionally suffered a large but unquantified population decline due to limestone mining (Krantz, 1988; Gonella and Neel, 1995). There are no populations that are secure from mining activity and most are within areas subject to massive disturbance within the next few decades.

Populations of this long-lived plant appear stable in areas where they are undisturbed (pers. obs.), but its habitat has been heavily disturbed and many plants destroyed by mines, haul roads, waste dumps and other mining related activities in recent decades (Krantz, 1988).

(g) Literature cited.

California Department of Fish and Game (CDFG). Aug. 1997. Special Plants List, Natural Heritage Division, Natural Diversity Data Base, Sacramento, California.

2. Cushenbury milk-vetch

Cushenbury milk-vetch—*Astragalus albens* Greene

(a) **Author.** Pamela J. MacKay, Department of Biology, Victor Valley College, 18422 Bear Valley Road, Victorville, CA 92392

(b) **Management status.** Federal: Endangered; California: S1.1, G1 (CDGF, 1998); CNPS: List 1B, R-E-D code 3-3-3 (Skinner and Pavlik, 1994)

(c) **General distribution.** Cushenbury milk-vetch is found in the northeast end of the San Bernardino Mountain range in San Bernardino County, California. With rare exceptions, it is restricted to carbonate and carbonate-related soils and outcrops from 4000-6600 ft. (1300-2000 m). Its range extends from a ridgetop just east of Dry Canyon to the southeast through Lone Valley, east of Baldwin Lake, to upper Burns Canyon. An unverified population at Box ‘S’ Springs, two to three miles northwest of Cushenbury at 3600 ft. (1100 m), is its northernmost and lowest reported location.

(d) **Natural history.** Cushenbury milk-vetch is an herbaceous member of the pea family (Fabaceae), and was first collected by Parish and Parish (Greene, 1885). Several prostrate stems, each 2-12 in. (0.5-3 cm) long, emerge from the base. The leaves and stem have appressed silvery-white hairs, giving the plant a smooth, sleek, gray appearance. The pinnately-compound leaves have 5-9 leaflets which are elliptic to oval-shaped, have obtuse tips, and are each 0.2-0.4 in. (5-10 mm) long. Flowers occur in racemes on 0.8-2.0 in. (2-5 cm) long peduncles. The calyces are about 0.16 in. (4 mm) long, and also bear the silky silvery-white hairs. The papilionaceous corolla is pink to purplish, with both banner and keel 0.3-0.4 in. (7-10 mm) in length, exceeding the wing length. The sessile fruits have two locules, are about 0.4-0.7 in. (10-18 mm) long, crescent-shaped, three-sided, and densely strigose (Hickman, 1993; Munz, 1974; Barneby, 1964). This fruit shape helps to distinguish the Cushenbury milkvetch from Bear Valley milk-vetch (*A. leucolobus*) which may also grow sympatrically on carbonate soils (USFWS 1997). It also resembles Mojave milk-vetch (*A. mohavensis*) from the northern Mojave Desert, but Mojave milk-vetch is not pubescent, as is the Cushenbury milk-vetch (Isely, 1984).

Cushenbury milk-vetch has been described both as an annual and as a short-lived perennial herb (Barneby, 1964; Greene, 1885; Hickman, 1993; Munz, 1974; Skinner and Pavlik, 1994). Little is known of its life history. Greene reported that a “good proportion” of the plants flower precociously and are monocarpic, especially in years of low rainfall (Greene, 1885). However, it is not known whether the plants typically flower and fruit the first year, how long they live, or what conditions might cause them to act as annuals in some cases or perennials in other cases. Flowering occurs from late March to mid-June. Pods ripen at least as early as May, and become stiff and papery with long hairs as they mature.

Pollen vectors are most likely small bees, given the flower shape and color (Faegri and Van der Pijl, 1978). It is not known if this species is self-compatible. Most
Cushenbury milk-vetch reproduction presumably occurs by seed, and seeds have been found to have high viability (Tierra Madre Consultants, 1996). Vegetative reproduction has never been reported. Seeds require scarification, and greenhouse experiments have shown that seedlings are susceptible to damping off when grown in pots (Tierra Madre Consultants, 1996). It has long been known that seeds remain dormant in the soil during drought years (Greene, 1885), but the numbers of viable seeds present in the soil and the length of time they can remain viable is unknown. The extent of seed predation, the numbers and kinds of seed predators, and seed dispersal mechanisms are also unknown.

(e) Habitat requirements. Generally Cushenbury milk-vetch is restricted to carbonate soils (Gonella and Neel, 1995; Tierra Madre Consultants, 1992), but one account reported populations from non-carbonate soils. Subsequent surveys have not supported this finding (Tierra Madre Consultants, 1992), and it is likely that these plants were on carbonate alluvium that had been deposited over granite bedrock, as is often the case in populations below 5000 ft. (1600 m) elevations (USFWS, 1997). More recently, Cushenbury milk-vetch plants have been found on granitic soil (Psomas and Associates, 1996), but it is likely that these plants fell into the site, along with some carbonate substrate, during a debris slide. It is expected that, as larger species move into the disturbed area, the Cushenbury milk-vetch plants will be eliminated (Psomas and Associates, 1996). It often occupies areas with an open canopy, less litter accumulation (2.3%), higher percent calcium (average 21.3%), and shallower slope angles (average 12.1°) than other carbonate sites that do not support these plants (Gonella and Neel, 1995; USFWS, 1994).

Cushenbury milk-vetch has been reported from Joshua tree woodland and blackbush scrub communities, but is most commonly found in pinon-juniper woodland. It has been reported growing with dominant species Utah juniper (Juniperus osteosperma), joint fir (Ephedra viridis), paper bag plant (Salazaria mexicana), mountain mahogany (Cercocarpus ledifolius), Mojave yucca (Yucca schidigera), manzanita (Arctostaphylos glauca), flannel bush (Fremontodendron californicum), Great Basin sagebrush (Artemisia tridentata), and needlegrass (Stipa coronata) (CDFG 1997; Gonella and Neel, 1995).

(f) Population status. It has been estimated that there are between 5000-10,000 Cushenbury milk-vetch plants throughout the entire range (USFWS, 1997), and the total number probably varies annually depending on rainfall (Barneby, 1964; USFWS, 1997). Estimates from previous surveys in 1988 indicated a total of just over 2000 plants (Barrows, 1988), but more detailed surveying in subsequent years with greater rainfall led to the increase in estimated number of plants. The population center with the most dense population is most likely in Lone Valley, with 3172 Cushenbury milk-vetch plants found at the proposed Right Star mine site in 1991 (USFS, 1992). However, the variation due to environmental conditions, coupled with the unknown nature of the soil seed population and inability to survey all potential habitat, make it very difficult to develop any reliable estimate of population size.

(g) Constraints to Recovery and Restoration.

(i) Natural recolonization. There appears to be some potential for natural recolonization of slightly disturbed sites by Cushenbury milk-vetch (Barrows, 1988; Tierra Madre Consultants, 1992; USFWS, 1997). This species has been observed on little used roads and on two small quarries that have been abandoned for 20 to 25 years (USFS, 1992). There is no indication that they can tolerate continuous disturbance or high levels of disturbance, such as active quarrying or continual usage of roads (Sanders 1992; Tierra Madre Consultants, 1992). That this species can tolerate a degree of disturbance does not mean that disturbed sites are preferred. At Right Star mine site in Lone Valley, there were significantly fewer Cushenbury milkvetch plants per acre in previously disturbed areas than in adjacent undisturbed areas. A greater proportion of juvenile plants were found in undisturbed areas, possibly indicating more recruitment when there is less disturbance (USFS, 1992).

(ii) Propagation. It is uncertain whether Cushenbury milkvetch plants could be propagated in a greenhouse for purposeful revegetation. Although an attempt to germinate seeds was successful as long as
seeds were scarified, the necessity to keep soil moist for seedling establishment encouraged the growth of the root rot fungus, *Pythium*, which probably caused death of all of the seedlings in the study (Tierra Madre Consultants, 1996). In a trial revegetation program at Gordon Quarry, Cushenbury milk-vetch plants were salvaged, potted, and kept in a greenhouse prior to relocation and transplant to a field site, but all plants died in the greenhouse. However, plants were observed later in the Gordon Quarry, evidently recolonizing naturally (Tierra Madre Consultants, 1992).

(iii) Genetic characteristics. Cushenbury milk-vetch populations experience extreme fluctuations due to amounts of annual precipitation (Barneby, 1964; USFWS, 1994). This could possibly lead to genetic bottlenecks, which could result in loss of genetic diversity (Barrett and Cohn, 1991). However, recent isozyme research has shown a surprisingly high degree of heterozygosity for an endemic species (Neel, 1999). The maintenance of genetic diversity through years with low populations is likely due to the soil seed bank. Although there are currently no seedbank data, Cushenbury milk-vetch population increases following rainy seasons indicate that seeds must persist in the soil for at least several years.

Human disturbances, such as road building and quarry excavation, cause habitat fragmentation which might eventually restrict gene flow and also lead to loss of genetic diversity and long term population viability (Beeby, 1993).

(b) Research needs.

(i) Reserve location and design. Further research is needed to obtain information necessary for appropriate selection of reserve sites as well as for management of Cushenbury milk-vetch. The specific areas already designated may turn out to be the best locations for recovery plan reserves, and it would be a good strategy to secure these lands as temporary reserves as soon as possible before any more habitat is destroyed. However, just because these areas have the highest number of carbonate endemic species, establishment of reserves in these locations does not ensure long-term population viability of any or all of the carbonate endemic taxa involved. Establishing a reserve for all carbonate endemics does not take into account habitat preferences for each species to be protected (Gonella and Neel, 1995). In addition, these areas may not represent the genetic diversity present within this taxon, and may not represent the ecological range of the taxon, both of which are important criteria in establishing effective reserves (Neel, 1999).

It is recommended that reserves should be set up at a variety of elevations and geographic locations, so that random events, such as fires or flash floods, would not impact all reserves at one time (White, 1997; Neel, 1995), and that each reserve site should include unoccupied habitat into which the species can move in the future (White, 1997).

(ii) Life history research needs. If data were available on recruitment and reproductive success in various areas within its range, efforts could be directed toward establishing reserves in those sites where the Cushenbury milk-vetch gets established and produces viable seed most readily. Research is needed to determine if the plants always flower and fruit the first year, how long they live, and what conditions influence their life history strategy. This information would be useful in conservation management by helping to predict future reproductive effort and population fluctuations.

If seed bank information were available (such as seed bank population size, numbers and kinds of seed predators, and the extent of seed predation) the genetic repercussions of random population variation due to climate could be more predictable, potential rates of recolonization of disturbed areas might also be determined with more accuracy, and there would be greater precision in determining how large preserves and buffers must be to maintain population viability. If seed dispersal mechanisms were known, there would be a better understanding of potential for natural recolonization.

(iii) Research on habitat requirements. It would be helpful to obtain information about mycorrhizal associations (White, 1997), and to use available information about soil mineral nutrient content and texture preferences for this species (Gonella and Neel, 1995); reserves could be established and revegetation efforts
could be directed only in areas which meet those requirements. To understand data gleaned from monitoring population fluctuations, it is imperative to know how rainfall affects population size from year to year, so these effects can be separated from those from human activities.

(i) Literature cited.

California Department of Fish and Game. 1997. Natural Diversity Data Base, RareFind Report.

Henderson, B. 1995. Natural Diversity Data Base field survey forms for Astragalus albens, submitted to the California Department of Fish and Game.

Leverett, A. 1995. Natural Diversity Data Base field survey forms for Astragalus albens, submitted to the California Department of Fish and Game.

Neel, M. 1999. Ph.D. Diss. data, Department of Botany and Plant Sciences, University of California, Riverside.

3. Cushenbury oxytheca

Cushenbury oxytheca—Oxytheca parishii var. goodmaniana

(a) Author. Andrew C. Sanders, Herbarium, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124

(b) Management status. Federal: Endangered; California: S1.1, G4?T1 (CDFG, 1998); CNPS: List 1B RED code 3-3-3 (Skinner and Pavlik, 1994)

(c) General distribution. Cushenbury oxytheca is endemic to the San Bernardino Mountains of southern California and is restricted to the dry carbonate slopes on the north side of the range. It has never been found outside of this limited area.

(d) Natural history. Cushenbury oxytheca is an annual herb of the buckwheat family (Polygonaceae). It is poorly known and was almost unknown before it began to be studied as a result of the realization that most of its limited habitat was subject to elimination by limestone mining. Little has been published on the natural history of the plant and much of what follows is based on personal observation and the study of a limited number of herbarium specimens. It occurs on
dry open slopes, mostly in loose scree and talus derived from limestone (Hickman, 1993; pers. obs.).

Oxytheca plants germinate in the fall following the first rains and exist as a vegetative rosette through the winter months. The basal rosette consists of relatively broad, oblong-obovate, green leaves, which are followed in the spring by a slender leafless inflorescence. As the inflorescence matures the leaves wither and dry, so that by the time of late flowering or fruit ripening the plant typically has no living leaves at all. All late season photosynthesis is presumably carried on by the green stems and the involucral bracts. The flowers are white with a reddish midrib, and are apparently insect pollinated. Specific pollinators, germination requirements, seed longevity, and most other aspects of the biology of this species are largely unknown, but there are some recent observations on the insect associates of this plant.

Based on limited observations in the summer of 1998, it appears that the insect pollinators of this species are generalists, such as various flies and possibly small beetles (S. Morita, pers. comm.), rather than highly specialized pollinators tied closely to this species. Small gray beetles of the family Dasitidae were found visiting the flowers (S. Morita, pers. comm.). At least two plant feeding insects have been identified attacking this species, including the bordered plant bug (Largidae: Largus cinctus Californicus), which is a generalist sap feeder, and an otherwise unidentified leaf beetle (Chrysomelidae) which was observed eating the flowers (S. Morita, pers. comm.). In addition to the above, a number of big-eyed bugs (Lygaeidae: Geocoris) were found on the plants (S. Morita, pers. comm.), but these were probably predators on other insects rather than plant feeders (G. Ballmer, pers. comm.).

The taxonomy of Cushenbury oxytheca is in need of clarification, with respect to the distinctiveness of this taxon relative to the other two varieties of Oxytheca parishii in the San Bernardino Mountains, var. parishii and var. cienegensis. Cushenbury oxytheca is most readily separated from the other two San Bernardino Mountains varieties by its possession of only four (or rarely 5) involucral awns (Reveal, 1989). These awns are also shorter (ca. 2-3 mm) and more slender and inconspicuous than those in the other two varieties. Parish’s oxytheca (var. parishii) is the most widespread and distinctive variety with its numerous (10-36) long (ca. 4-4.5 mm) awns on the involucral lobes. These awns are thicker and much more conspicuous than those in the other varieties. It is also the most widespread variety, due to its habitat preferences — openings on granitic slopes in yellow pine forest. It is widespread from Big Bear, west through the Crestline/Arrowhead area, and then continuing through the San Gabriel Mountains to the mountains of Ventura County (Reveal, 1989). Variety cienegensis is the most poorly known of the three varieties and the one most similar to variety goodmaniana. It is intermediate in involucral awn number (7-10) and length (3-4 mm) between the other two varieties. Variety cienegensis occurs on various substrates from Tip-Top Mountain to Cienega Seca near Onyx Peak, and plants near Tip-Top Mountain are on limestone and appear to be morphologically transitional toward var. goodmaniana. Being recently described (Ertter, 1980), and not being in an area of high environmental impact, this variety has received much less attention from botanists and environmental consultants than has Cushenbury oxytheca. All three varieties are illustrated in the Jepson Manual (Hickman, 1993).

(e) Habitat requirements. Cushenbury oxytheca occurs only on carbonate slopes, usually steep ones, and almost always on loose scree or talus. This preference is revealed in the data from the only published results from plot-based population sampling of limestone endemics in the San Bernardino Mountains (Gonella and Neel, 1995). Cushenbury oxytheca was never (0 of 30 plots) found on sample plots centered on Cushenbury milkvetch (Astragalus albens) plants but was fairly regularly found on plots lacking this species (Gonella and Neel, 1995). Cushenbury milkvetch is a species typical of stable, often bedrock, slopes. Likewise, Cushenbury oxytheca appears to be negatively correlated with the presence of Cushenbury buckwheat (Eriogonum ovalifolium var. vineum), another species which prefers stable slopes (Gonella and Neel, 1995). However, recent surveys conducted by Rancho Santa Ana Botanic Garden for the U.S. Forest Service did find Cushenbury oxytheca growing with Astragalus albens and Eriogonum ovalifolium var. vineum in some areas (V. Sosa, pers. comm.).
Populations occur at elevations between 4000 and 7800 ft. (1200-2380 m) in the pinyon-juniper woodland (Reveal, 1989) and Jeffrey pine-western juniper (M. Neel, pers. comm.) vegetation zones which, of course, occurs on the desert-facing slope of the mountains. In this zone air movement is primarily descending and hence often removes moisture from vegetation, rather than depositing moisture as rain as it does on the coastal slope. The resulting lack of rainfall and consequent substrate aridity makes it important that plants be either early flowering or deep rooted, so that they can take advantage of the limited water supply. Cushenbury oxytheca is late flowering (May-June), but has a relatively long straight taproot and presumably is able to tap into supplies of soil moisture below the surface where low atmospheric humidity results in moisture being removed from the soil.

The loose gravel and rock substrate preferred by Cushenbury oxytheca has several important ecological characteristics that may favor this species. The first and most obvious is that, because the slopes are unstable, it is difficult or impossible for larger, potentially competing, trees and shrubs to become established. This leaves the habitat open for smaller annuals like Cushenbury oxytheca to occupy. A second noteworthy characteristic is the coarse and well-aerated character of the substrate, which permits rapid infiltration of rainfall and thus less moisture loss to runoff than would otherwise be expected. It is probable, also, that soil moisture in occupied talus is supplemented by runoff from rocky slopes, cliffs and bedrock outcrops above, where those are present. The loose character of the soil also permits the easy penetration of roots and the coarse surface material serves as a “ock mulch” to retard the loss of soil moisture to the atmosphere. These characteristics permit plant growth after the soil surface has dried.

(f) Population status. Cushenbury oxytheca was found at nine of 88 sites sampled on carbonate substrates in the San Bernardino Mountains in 1992 and 1993 (Gonella and Neel, 1995), which clearly indicates that it is more widespread than formerly known though still uncommon. A total of at least 50 populations were known as of 1998 (V. Sosa, pers. comm.), which is a substantial increase from the four known in 1992 (Tierra Madre, 1992), or the 15 reported more recently (USFWS, 1997). It is apparent that a clear understanding of the abundance and distribution of this plant within its narrow range is still developing.

Populations of Cushenbury oxytheca do not appear to exhibit a general downward trend, given the population fluctuations that are normal in an annual plant, at sites where it is not being directly impacted by mining (pers. obs.). Populations are highly variable (White, 1997) at any given site, but plants can be locally common after particularly favorable years. Populations vary in response to rainfall and other climatic conditions, so that at a given site where there was a substantial population one year there may be few to none the next. Even in years when no plants are present, a living seed bank remains. However, large parts of its range are under heavy pressure by mining interests and so overall Cushenbury oxytheca has certainly declined significantly over recent decades. It has been estimated that over 1600 acres of potential habitat for the various carbonate endemics had been lost to mining by 1993 (Gonella and Neel, 1995). Unfortunately, because this plant was little collected and never censused prior to the 1980s, the historical pattern of its population sizes and distribution is unknown, except by inference. At best, we can infer former distributions based on habitat type and general range. Sites that are now mined down to bedrock, but which are in areas which were formerly suitable habitat, must be presumed to have formerly supported this plant. A quantitative survey of the abundance and distribution of this species has recently been completed and this has revealed that the species is more widespread than formerly known (V. Sosa, pers. comm.), though it is still seen to be very restricted in its distribution.

Cushenbury oxytheca is a naturally restricted endemic, but populations have apparently been further reduced by mining activity within its range, based on the widespread disturbance of carbonate habitats (Gonella and Neel, 1995).

g) Literature cited.

CDFG (California Department of Fish and Game), Aug. 1997. Natural Heritage Division, Natural Diversity Data Base, Special Plants List.

4. Parish’s daisy

Parish’s daisy—Erigeron perishii Gray

(a) Author. Andrew C. Sanders, Herbarium, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124

(b) Management status. Federal: Threatened; California: S2.1, G2 (CDFG, 1998); CNPS: List 1B, RED code 2-3-3 (Skinner and Pavlik, 1994)

(c) General distribution. Parish’s daisy is endemic to southern California and is restricted to the dry calcareous (primarily limestone) slopes of the San Bernardino Mountains, with a few collections from generally granitic areas at the east end of the San Bernardino Mountains and in the Little San Bernardino Mountains. The substrate at the sites where the species was collected away from the major carbonate deposits has often not been clearly specified and needs clarification. Most of the populations are on lands within the boundary of the San Bernardino National Forest. This species is reported by Nesom (1993) only from Cushenbury Canyon on the north slope of the San Bernardino Mountains, but specimens exist documenting its occurrence in many other nearby areas. There are reported to be 50 occurrences (USFWS, 1997) but many of these probably represent reports of different parts of single populations. Specific localities include: mouth of Marble Canyon (BLM land); Arctic Canyon, Bousic Canyon, Furnace Canyon, Grapevine Canyon, Cactus Flat (head of Cushenbury Canyon); Cushenbury Spring; Horsethief Flat, near Blackhawk Canyon, limestone outcrop 1.5 mi. (2.5 km) NE of Baldwin Lake, 6200 ft. (1890 m); 8 miles (13.3 km) S of Warren’s Well [= site of Yucca Valley Airport], and E of Long Canyon, 3600 ft. (1100 m). The latter two localities are in the Little San Bernardino Mountains.

There have been, over the years, a number of reports and collections that indicate that this species occurs in the Eastern Mojave Desert in the vicinity of the Ivanpah Mountains but these have all, upon examination, proved to be errors, usually based on the vaguely similar Erigeron concinnus (H. & A.) Torr. & Gray [=E. pumilus var. concinnoides] and the species has never been reported from that area by any major flora (e.g., Nesom, 1993; Munz, 1974). It has also been erroneously reported from other areas based on the related E. utahensis (USFWS, 1997), which occurs on limestone slopes in the Providence Mountains (Nesom, 1993).

The Cactus Flat locality is somewhat dubious in that the habitat is not typical (largely or entirely granitic instead of calcareous) and it is based only on an
Though, oddly, the second edition (apparently unaltered) of the original description (Gray, 1888) merely says “rocky caoons, borders of the Mojave Desert, S.E. California, Parish.” Later authors must be relying on additional information derived from the label on the type specimen, since their locality descriptions are more expansive than the original description.

The stems are erect or ascending and may be either numerous or rather few on each plant, but on mature plants are typically at least 20 in number. The stems tend to be faintly zig-zag rather than straight. They arise from a somewhat woody base that usually bears the remains of previous years branches. The plants are 3-12 in. (7-30 cm) tall and have the stems and foliage covered with a conspicuous, loose, whitish to grayish appressed pubescence. This pubescence is particularly thick and persistent on the stems and these often stand out as whiter than the leaves. The older leaves appear to gradually lose pubescence so that they are often greener than the rest of the plant. The pubescence is often described as silvery-white. The leaves are slender and entire.

The flower heads are solitary on bracted, almost leafy, peduncles, but there are commonly 2-4 peduncles per stem. The total number of heads on a mature plant can easily equal 50 in a given season. The heads bear lavender ray flowers and yellow disk flowers.

The method of pollination is unknown for Parish's daisy, but is certainly by insects, based on the conspicuously colored flowers. Likely candidates include bees, butterflies or long-tongued flies, based on the known pollinators of other composites of similar general flower structure. Seed dispersal is unstudied as is the relative importance of seeds versus possible vegetative spread in the maintenance and expansion of populations, though seedlings have been reported at several sites (Krantz, 1979) and are probably the predominant mode of reproduction. Flowering is reported to occur from May to July (Krantz, 1979), but the peak of flowering seems to be from mid May to mid June. At least in some years a few plants continue flowering into July and some even into August (M. Provance, pers. comm., 1998). Flower heads have been found to be attacked by insect larvae [Tephritid flies?] but the extent

(d) Natural history. Parish's daisy is an herbaceous perennial with a long simple tap root that extends for some distance (perhaps 50 cm) into the loose carbonate alluvium, which the species favors. This species was first described by Asa Gray in 1884 from specimens collected by S.B. Parish (#1251) at Cushenbury Springs in May 1881 (Ferris, 1960; Krantz, 1979).
and effect of such damage is unknown, though reported to be “not widespread” (Krantz, 1979).

(e) Habitat requirements. Parish’s daisy is largely restricted to carbonate substrates, but has been found on other rock types occasionally. Plants appear to be most commonly found either along washes on the canyon bottoms or on loose alluvial deposits on adjacent benches, but are also regularly found on steep rocky slopes. It appears that the Pioneertown site is primarily granitic, but along the washes where the species occurs there are reported to be some carbonate materials washed down from higher elevations (K. Barrows, pers. com., 1997). This is not certain and needs to be confirmed. There is limestone in the general vicinity (Dibblee, 1967b). It may be that the apparent carbonate preference is based on reduced competition from other plants on this substrate. Certain non-carbonate sites that are otherwise ecologically favorable could thus support the species. Two of the collections that appear to be from granitic areas are old (old collections are more frequently inaccurate or vague in their site data than more recent ones) and do not specify the substrate at the site where the plant was collected. However, there are recent reports of this species on non-calcareous, decomposed granite, slopes within the carbonate region on the north slope of the San Bernardino Mountains (M. Provance, pers. comm., 1998). These reports are very few, however. All sites where the soil was actually tested have been found to have strongly alkaline soils, regardless of predominant origin (M. Provance, pers. comm., 1998). This implies that even the granitic areas may have been somewhat influenced in their soil chemistry by drift from adjacent carbonate slopes.

Parish’s daisy occurs, based on available specimens, at elevations from 3700-6600 ft. (1125 - 2012 m), though Nesom (1993) gives a range of 800-2000 m (2625-6560 ft.). The low end of the range given by Nesom seems definitely to be in error as that elevation (2625 ft.) would put the species far out onto the flats of the Mojave Desert, where it has never been collected.

(f) Population status. This species is naturally of rather restricted distribution and is probably largely confined to a very specific substrate that is not of wide occurrence within its range. That particular substrate (limestone) has become economically valuable in recent years and so many populations have been destroyed or damaged by limestone mining.

Parish’s daisy is clearly declining, much habitat has been destroyed by limestone mining, but is still among the more common of the carbonate endemics of the San Bernardino Mountains. This species was reported to be “abundant on stony hillsides at Cushenberry Springs” by Hall (1907), which suggests a change in abundance over the past 90 years, but this is obviously not conclusive since the precise meaning of “abundant” in Hall’s mind is unknown. It is possible that Hall never actually saw the plant at this site, since he notes that as of the date he wrote only Parish had collected it. He may have based his description of daisy abundance on notes on one of Parish’s collections or on discussions with Parish (whom he knew personally). If Hall had seen it himself, at a suitable season, it seems likely he would have collected the plant.

Parish’s daisy seems better able to recover after disturbance than some carbonate endemics. There is considerable need for clarification of its distribution and substrate preference at the eastern end of the San Bernardino Mountains (Pioneertown area) and in Joshua Tree National Park. These are areas where the reported occurrence is based on just a few specimens, often very old or poorly located (especially with respect to substrate). There were fewer than 25 occurrences of this species known prior to its listing as threatened by the USFWS, with a total of ca. 16,000 individuals reported. But, that occurrence total has since been increased to ca. 50 (USFWS, 1997). There are several problems with both the original estimate and this expansion based on the newer “occurrence” estimate. The largest problem is that it is not at all certain that the various reported occurrences actually represent separate populations or that some of the individuals reported in one “occurrence” are not also reported again in another.

(g) Literature cited.

California Department of Fish and Game (CDFG). 1989. Database Report, Natural Heritage Divi-
California Department of Fish and Game (CDFG). 1997. Special Plants List, Natural Heritage Division, Natural Diversity Data Base, Sacramento, California.

Appendix C: Habitat Definitions

The calculation of Conservation Value under the CHMS (see Section 7) depends upon the definitions of “Occupied Habitat,” “Suitable Habitat,” and “Other Beneficial Habitat.” This appendix explains how available data has been and will be used to determine whether land falls into these categories. Under the CHMS, Conservation Value can also be established for various categories of revegetated habitat, whose definitions are found in Appendix E.

As described in Sections 7(c) and 14(d), the Habitat Inventory officially establishes the habitat categories that apply to any given parcel of land within the CHMA. The Forest Service maintains the Habitat Inventory as a set of digital GIS files.

(a) Habitat definitions for the initial Habitat Inventory. The initial Habitat Inventory for the CHMS has been established and is represented in the habitat statistics in Appendix D and by Map 4 in Appendix I. The initial Habitat Inventory has been accepted by the MOU Parties as the official Habitat Inventory of the CHMS and will be the basis for the biological assessment prepared by the Resource Management Agencies to initiate the CHMS Section 7 Consultation and for the CHMS Biological Opinion from the USFWS that results from such consultation. Except as modified in accordance with Section 14(d), the initial Habitat Inventory controls for purposes of determining Conservation Values under the CHMS. The habitat models that were used to develop the GIS database for the initial Habitat Inventory are described in a memorandum dated September 5, 2001 from Sean Redar and Scott Eliason to the U.S. Fish and Wildlife Services (Redar and Eliason (2001); available from the Forest Service upon request). Based on those habitat models, the habitat category definitions for the initial Habitat Inventory were established in accordance with the following:

(i) Occupied Habitat. Habitat that is known to be occupied by one or more species of Carbonate Plants. Currently, these data are based on field survey information gathered over approximately the last 15 years. The Occupied Habitat data layer includes a wide range of precision, from approximately 30 meters down to approximately 1 meter. This range is based on improving GPS technology over time and differing mapping techniques. Despite this range of precision, the current occupied habitat layer is considered to be accurate and is the best available information.

(ii) Suitable Habitat. Habitat that possesses the qualities necessary to support occurrences of Carbonate Plant occurrences, but is not known to be occupied. These are areas where undiscovered occurrences are most likely to be found in the future, and are also areas that are likely to be occupied over long periods of time as the distribution of carbonate plants changes across the landscape. These are also important areas that support many species of plants and animals (including pollinators) that are associated with the Carbonate Plants. The data underlying the current mapping of Suitable Habitat, derived from the model described in Redar and Eliason (2001), are considered to be fairly accurate. Aerial photo interpretation and limited ground-truthing has verified the model, though much of the suitable habitat has not been verified in the field. Despite this uncertainty, the current Suitable Habitat layer represents the best available information.

(iii) Other Beneficial Habitat. Undisturbed natural land that provides some geomorphological, hydrological, or habitat configuration benefit to the Carbonate Plants, but excluding Occupied Habitat and Suitable Habitat. The layer for Other Beneficial Habitat was developed heuristically with reference to (a) available geological and hydrological information and (b) the locations of mapped patches of Occupied Habitat and Suitable Habitat.

(b) Habitat definitions for modifications to the Habitat Inventory. As the Habitat Inventory is revised
over time in accordance with Section 14(d), it is necessary to apply clear and consistent data standards. Applying such data standards over time will eventually remove discrepancies in the precision of Occupied Habitat polygons and uncertainties in the Suitable Habitat layer and will ensure that Conservation Value derived from these layers is uniformly applied. These standards include survey protocols, suitable habitat criteria, mapping standards (both for the field and for the digital Habitat Inventory), and attribute data and metadata requirements. All of these standards are in draft form and available from the Forest Service upon request.

(c) Conservation Value mapping. As the Occupied Habitat and Suitable Habitat layers are refined based on future fieldwork, the Conservation Value layer will be updated with the same level of precision. Although the current Conservation Value map (Map 5 in Appendix I) was created with 30 meter resolution raster data, future revisions should result in a more precise mapping of Conservation Value. At any time, calculations should be based on the best (i.e., most recent, accurate, and precise) data available.
Appendix D: Habitat Statistics

The following tables provide an account of the habitat data in the current Habitat Inventory by Unit, habitat type, and land use category. All figures are given in acreage, except the summary of Conservation Value within each Unit, which is given in Conservation Units. “All Occupied Habitat” may be less than the sum of the Occupied Habitat of each of the Carbonate Plants because some acreage is occupied with more than one of the Carbonate Plants. Critical Habitat is the Carbonate Habitat that has been designated as critical habitat by the USFWS.

<table>
<thead>
<tr>
<th>White Mountain Unit Total</th>
<th>M1</th>
<th>M2 & X</th>
<th>D</th>
<th>P</th>
<th>Init Resrv</th>
<th>S1 Priority</th>
<th>S2 Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Value</td>
<td>922</td>
<td></td>
<td>701</td>
<td>112</td>
<td>109</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>Occ Hab, E. ovalifolium</td>
<td>29</td>
<td></td>
<td>-</td>
<td>-</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ Hab, A. albens</td>
<td>-</td>
<td></td>
<td>21</td>
<td>8</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Occ Hab, O. parishii</td>
<td>68</td>
<td></td>
<td>58</td>
<td>-</td>
<td>10</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Occ Hab, E. parishii</td>
<td>21</td>
<td></td>
<td>12</td>
<td>4</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Occupied Habitat</td>
<td>99</td>
<td></td>
<td>80</td>
<td>9</td>
<td>10</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Suitable Habitat</td>
<td>1,331</td>
<td></td>
<td>1,065</td>
<td>198</td>
<td>68</td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>Other Beneficial Habitat</td>
<td>619</td>
<td></td>
<td>349</td>
<td>-</td>
<td>270</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Total habitat acreage</td>
<td>2,049</td>
<td></td>
<td>1,494</td>
<td>207</td>
<td>348</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>Critical Habitat</td>
<td>435</td>
<td></td>
<td>335</td>
<td>-</td>
<td>100</td>
<td>308</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Furnace Unit Total</th>
<th>M1</th>
<th>M2 & X</th>
<th>D</th>
<th>P</th>
<th>Init Resrv</th>
<th>S1 Priority</th>
<th>S2 Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Value</td>
<td>10,544</td>
<td></td>
<td>1,045</td>
<td>4,597</td>
<td>2,918</td>
<td>2,094</td>
<td>1,234</td>
</tr>
<tr>
<td>Occ Hab, E. ovalifolium</td>
<td>592</td>
<td></td>
<td>29</td>
<td>352</td>
<td>166</td>
<td>53</td>
<td>219</td>
</tr>
<tr>
<td>Occ Hab, A. albens</td>
<td>507</td>
<td></td>
<td>11</td>
<td>383</td>
<td>74</td>
<td>66</td>
<td>198</td>
</tr>
<tr>
<td>Occ Hab, O. parishii</td>
<td>342</td>
<td></td>
<td>7</td>
<td>198</td>
<td>61</td>
<td>81</td>
<td>146</td>
</tr>
<tr>
<td>Occ Hab, E. parishii</td>
<td>530</td>
<td></td>
<td>14</td>
<td>266</td>
<td>243</td>
<td>35</td>
<td>119</td>
</tr>
<tr>
<td>All Occupied Habitat</td>
<td>1,545</td>
<td></td>
<td>47</td>
<td>915</td>
<td>426</td>
<td>202</td>
<td>452</td>
</tr>
<tr>
<td>Suitable Habitat</td>
<td>14,077</td>
<td></td>
<td>1,442</td>
<td>6,785</td>
<td>4,067</td>
<td>2,832</td>
<td>1,265</td>
</tr>
<tr>
<td>Other Beneficial Habitat</td>
<td>6,753</td>
<td></td>
<td>1,114</td>
<td>2,096</td>
<td>1,665</td>
<td>1,882</td>
<td>329</td>
</tr>
<tr>
<td>Total habitat acreage</td>
<td>22,375</td>
<td></td>
<td>2,603</td>
<td>9,796</td>
<td>6,158</td>
<td>4,916</td>
<td>2,046</td>
</tr>
<tr>
<td>Critical Habitat</td>
<td>6,050</td>
<td>60</td>
<td>213</td>
<td>3,362</td>
<td>1,876</td>
<td>729</td>
<td>1,423</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Helendale Unit Total</th>
<th>M1</th>
<th>M2 & X</th>
<th>D</th>
<th>P</th>
<th>Init Resrv</th>
<th>S1 Priority</th>
<th>S2 Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Value</td>
<td>8,865</td>
<td></td>
<td>5,862</td>
<td>72</td>
<td>2,934</td>
<td>1,513</td>
<td>842</td>
</tr>
<tr>
<td>Occ Hab, E. ovalifolium</td>
<td>592</td>
<td></td>
<td>-</td>
<td>454</td>
<td>4</td>
<td>137</td>
<td>218</td>
</tr>
<tr>
<td>Occ Hab, A. albens</td>
<td>695</td>
<td></td>
<td>-</td>
<td>663</td>
<td>7</td>
<td>25</td>
<td>386</td>
</tr>
<tr>
<td>Occ Hab, O. parishii</td>
<td>108</td>
<td></td>
<td>-</td>
<td>80</td>
<td>6</td>
<td>23</td>
<td>82</td>
</tr>
<tr>
<td>Occ Hab, E. parishii</td>
<td>478</td>
<td></td>
<td>-</td>
<td>416</td>
<td>-</td>
<td>64</td>
<td>228</td>
</tr>
<tr>
<td>All Occupied Habitat</td>
<td>1,460</td>
<td></td>
<td>-</td>
<td>1,243</td>
<td>15</td>
<td>218</td>
<td>633</td>
</tr>
<tr>
<td>Suitable Habitat</td>
<td>13,356</td>
<td></td>
<td>8,825</td>
<td>111</td>
<td>4,492</td>
<td>1,522</td>
<td>895</td>
</tr>
<tr>
<td>Other Beneficial Habitat</td>
<td>2,571</td>
<td></td>
<td>685</td>
<td>18</td>
<td>1,863</td>
<td>224</td>
<td>154</td>
</tr>
<tr>
<td>Total habitat acreage</td>
<td>17,387</td>
<td></td>
<td>10,753</td>
<td>6,158</td>
<td>6,573</td>
<td>2,379</td>
<td>1,384</td>
</tr>
<tr>
<td>Critical Habitat</td>
<td>5,430</td>
<td>19</td>
<td>-</td>
<td>3,848</td>
<td>95</td>
<td>1,481</td>
<td>1,674</td>
</tr>
</tbody>
</table>

(Continued on the following page)
<table>
<thead>
<tr>
<th>White Mountain Unit</th>
<th>Total</th>
<th>M1</th>
<th>M2 & X</th>
<th>D</th>
<th>P</th>
<th>Init Resrv</th>
<th>S1 Priority</th>
<th>S2 Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Value</td>
<td>922</td>
<td>-</td>
<td>-</td>
<td>701</td>
<td>112</td>
<td>109</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>Occ Hab, E. ovalifolium</td>
<td>29</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>8</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Occ Hab, A. albens</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Occ Hab, O. parishii</td>
<td>68</td>
<td>-</td>
<td>-</td>
<td>58</td>
<td>-</td>
<td>10</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Occ Hab, E. parishii</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>All Occupied Habitat</td>
<td>99</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>9</td>
<td>10</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Suitable Habitat</td>
<td>1,331</td>
<td>-</td>
<td>-</td>
<td>1,065</td>
<td>198</td>
<td>68</td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>Other Beneficial Habitat</td>
<td>619</td>
<td>-</td>
<td>-</td>
<td>349</td>
<td>-</td>
<td>270</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Total habitat acreage</td>
<td>2,049</td>
<td>-</td>
<td>-</td>
<td>1,494</td>
<td>198</td>
<td>68</td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>Critical Habitat</td>
<td>435</td>
<td>-</td>
<td>-</td>
<td>335</td>
<td>-</td>
<td>100</td>
<td>308</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Furnace Unit</th>
<th>Total</th>
<th>M1</th>
<th>M2 & X</th>
<th>D</th>
<th>P</th>
<th>Init Resrv</th>
<th>S1 Priority</th>
<th>S2 Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Value</td>
<td>10,544</td>
<td>-</td>
<td>1,045</td>
<td>4,597</td>
<td>2,918</td>
<td>2,094</td>
<td>1,234</td>
<td>1,125</td>
</tr>
<tr>
<td>Occ Hab, E. ovalifolium</td>
<td>592</td>
<td>-</td>
<td>29</td>
<td>352</td>
<td>166</td>
<td>53</td>
<td>219</td>
<td>115</td>
</tr>
<tr>
<td>Occ Hab, A. albens</td>
<td>507</td>
<td>-</td>
<td>11</td>
<td>383</td>
<td>74</td>
<td>66</td>
<td>198</td>
<td>182</td>
</tr>
<tr>
<td>Occ Hab, O. parishii</td>
<td>342</td>
<td>-</td>
<td>7</td>
<td>198</td>
<td>61</td>
<td>81</td>
<td>146</td>
<td>28</td>
</tr>
<tr>
<td>Occ Hab, E. parishii</td>
<td>530</td>
<td>-</td>
<td>14</td>
<td>266</td>
<td>243</td>
<td>35</td>
<td>119</td>
<td>192</td>
</tr>
<tr>
<td>All Occupied Habitat</td>
<td>1,545</td>
<td>-</td>
<td>47</td>
<td>915</td>
<td>426</td>
<td>202</td>
<td>452</td>
<td>418</td>
</tr>
<tr>
<td>Suitable Habitat</td>
<td>14,077</td>
<td>-</td>
<td>1,442</td>
<td>6,785</td>
<td>4,067</td>
<td>2,832</td>
<td>1,265</td>
<td>1,212</td>
</tr>
<tr>
<td>Other Beneficial Habitat</td>
<td>6,753</td>
<td>-</td>
<td>1,114</td>
<td>2,096</td>
<td>1,665</td>
<td>1,882</td>
<td>329</td>
<td>304</td>
</tr>
<tr>
<td>Total habitat acreage</td>
<td>22,375</td>
<td>-</td>
<td>2,603</td>
<td>9,796</td>
<td>6,158</td>
<td>4,916</td>
<td>2,046</td>
<td>1,934</td>
</tr>
<tr>
<td>Critical Habitat</td>
<td>6,050</td>
<td>60</td>
<td>213</td>
<td>3,362</td>
<td>1,876</td>
<td>729</td>
<td>1,423</td>
<td>1,314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Helendale Unit</th>
<th>Total</th>
<th>M1</th>
<th>M2 & X</th>
<th>D</th>
<th>P</th>
<th>Init Resrv</th>
<th>S1 Priority</th>
<th>S2 Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Value</td>
<td>8,865</td>
<td>-</td>
<td>-</td>
<td>5,862</td>
<td>72</td>
<td>2,934</td>
<td>1,513</td>
<td>842</td>
</tr>
<tr>
<td>Occ Hab, E. ovalifolium</td>
<td>592</td>
<td>-</td>
<td>-</td>
<td>454</td>
<td>4</td>
<td>137</td>
<td>218</td>
<td>123</td>
</tr>
<tr>
<td>Occ Hab, A. albens</td>
<td>695</td>
<td>-</td>
<td>-</td>
<td>663</td>
<td>7</td>
<td>25</td>
<td>386</td>
<td>165</td>
</tr>
<tr>
<td>Occ Hab, O. parishii</td>
<td>108</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>6</td>
<td>23</td>
<td>82</td>
<td>-</td>
</tr>
<tr>
<td>Occ Hab, E. parishii</td>
<td>478</td>
<td>-</td>
<td>-</td>
<td>416</td>
<td>-</td>
<td>64</td>
<td>228</td>
<td>132</td>
</tr>
<tr>
<td>All Occupied Habitat</td>
<td>1,460</td>
<td>-</td>
<td>-</td>
<td>1,243</td>
<td>15</td>
<td>218</td>
<td>633</td>
<td>335</td>
</tr>
<tr>
<td>Suitable Habitat</td>
<td>13,356</td>
<td>-</td>
<td>-</td>
<td>8,825</td>
<td>111</td>
<td>4,492</td>
<td>1,522</td>
<td>895</td>
</tr>
<tr>
<td>Other Beneficial Habitat</td>
<td>2,571</td>
<td>-</td>
<td>-</td>
<td>685</td>
<td>18</td>
<td>1,863</td>
<td>224</td>
<td>154</td>
</tr>
<tr>
<td>Total habitat acreage</td>
<td>17,387</td>
<td>-</td>
<td>-</td>
<td>10,753</td>
<td>144</td>
<td>6,573</td>
<td>2,379</td>
<td>1,384</td>
</tr>
<tr>
<td>Critical Habitat</td>
<td>5,430</td>
<td>19</td>
<td>-</td>
<td>3,848</td>
<td>95</td>
<td>1,481</td>
<td>1,674</td>
<td>924</td>
</tr>
</tbody>
</table>
Appendix E: Guidelines and Success Criteria for Revegetation and Carbonate Plant Introductions

The following guidelines and success criteria have been developed to provide consistency in revegetating lands disturbed by mining activities in carbonate habitat within the CHMA. The intent herein is to provide specific guidelines and success criteria for revegetation of native plants and habitats and introduction of Carbonate Plants in conjunction with mining reclamation. The revegetation objectives promoted by these guidelines are to set a successional trajectory toward a specified target vegetation as closely as practicable and to promote the reintroduction of listed plant species to reclaimed sites, where applicable. These guidelines and success criteria were prepared for incorporation into the CHMS, and those portions which are not specific to Carbonate Plants may also be incorporated into other planning documents, as appropriate, subject to public review. These guidelines are supplemental to revegetation requirements contained in the Reclamation Regulations. Except as specifically indicated to the contrary, capitalized terms in this appendix shall have the meanings ascribed to them in the CHMS, of which this appendix is a part.

(a) Credit for successful revegetation and introduction of Carbonate Plants. Operators or claim holders may elect to introduce one or more Carbonate Plant species onto mines or other disturbed sites undergoing or having completed reclamation. Where introduction is successful, these operators or claim holders may (but are not required to) make a Reserve Contribution of the sites for conservation credit in accordance with Section 10 of the CHMS using the conservation multipliers set forth below in this Section. To qualify for such credit, revegetation must be carried out and its success measured in accordance with this Appendix E. “Introduction,” as used in this appendix, includes both reintroduction of Carbonate Plants that occurred on the site prior to mining disturbance and introduction of Carbonate Plants onto the site when there were no previously known occurrences. The applicable multipliers for purposes of determining the Conservation Value of Revegetated Habitat are as follows:

(i) 0.25 per acre for successful revegetation in accordance with the revegetation success criteria described in Section (b)(iii) below without meeting success criteria for Carbonate Plants under Section (c)(i) below.

(ii) 0.50 per acre or sites meeting the success criteria described in Section (c)(i) below for at least one of the Carbonate Plants.

(iii) An additional 0.20 per acre for sites that meet the enhanced success criteria described in Section (b)(iv) below.

(iv) An additional 0.10 per acre will be added for each additional Carbonate Plant species (i.e., in excess of one) that meets the success criteria on the site, for an addition to the multiplier of up to 0.30 per acre. Occurrences of Carbonate Plants that meet the success criteria set forth in this appendix will be mapped and credited using the same data and mapping standards that apply to Occupied Habitat on natural surfaces (see Appendix C).

(b) General revegetation guidelines and success criteria. The following revegetation guidelines are required as a condition of receiving conservation credit for revegetation areas under the CHMS, and subsections (i)–(iii) and (v) of this subsection (b) may be incorporated, subject to public review, into future Federal Land Plans. The County may also adopt subsections (i)–(iii) and (v) as conditions of future reclamation plans under SMARA. For revegetation under the CHMS, in the event of any conflict between the guidelines set forth in this Section (b) and revegetation guidelines in a future Federal Land Plan that are applicable in a particular case, the guidelines in such Federal Land Plan shall control. Because revegetation practice
continues to evolve, practitioners should remain current with the literature and advances in the field. They also should contact SBNF, the BLM California Desert District, and the County for recommendations on revegetation practice.

(i) Target vegetation. The “target vegetation” for each revegetation site will be selected based on existing reference data for the appropriate vegetation zone or site-specific sampling (collectively, the “Baseline Data”), at the agreement of the applicant and the applicable Resource Management Agency. Reference data within the CHMA were derived from plot-based vegetation sampling taken across more than 600 plots between 1990 and 1998. Future sampling may result in an update and revision to these data. These data will be made available upon request by the Mountaintop District Botanist on the SBNF.

(ii) Soil inventory. Soil resources (all available topsoil or “growth medium”) will be inventoried for volume and reclamation suitability during the planning stages, and soils inventory results will be included in the revegetation plan. To avoid the need for extended soil stockpiling, the use of soil salvaged from a new quarry site for reclamation of another (closed) quarry or waste dump will be encouraged.

(iii) Success criteria. All operations will be required to document full compliance with the applicable reclamation plan and associated regulations. The following additional criteria must be met to receive conservation credit under the CHMS. These criteria may be incorporated into revised Federal Land Plans (due for completion in 2004), subject to public review, after which these criteria would apply to future mining and reclamation plans on the SBNF and in the California Desert Conservation Area.

(A) Reclamation. Meet or exceed all reclamation requirements under the mining and reclamation plan for the site and under the applicable Reclamation Regulations, and maintain the mining operation in full compliance with the Mining Plan.

(b) Cover. Achieve a mean native vegetation cover percentage of at least 50% of the mean native cover value specified in the Baseline Data.

(c) Density. Achieve a mean density of each of three climax/dominant species for that vegetation zone that is at least 50% of the specified mean densities for those species in the Baseline Data.

(d) Richness. Achieve a mean species richness (average species count per 0.1 acre sample plot or other unit area as applicable, depending on sample methods) that is at least 50% that of the value specified in the Baseline Data.

(e) Non-native species cover. Non-native species cover will be no more than an absolute cover of 15%, and annual monitoring data will show a downward trend, documented by a declining regression coefficient (negative b value) over the monitoring period.

(f) Aggressive/invasive weeds. On the date of approval by the applicable Resource Management Agency, none of the following species of highly invasive exotic species (the “Invasive Exotics”), will occur within the revegetated site:

- *Arundo donax*
- *Pennisetum setaceum*
- *Tamarix spp.*
- *Elaeagnus angustifolia*
- *Ricinus communis*
- *Spartium junceum*
- *Verbascum thapsus*
- *Nicotiana glauca*
- *Linaria spp.*

All occurrences of Invasive Exotics must be documented and removed upon detection, and the reports required in Section (b)(v)(b) below must document any removal and confirm that all these species are absent from the site. Such removal may be performed at any time without being regarded as “Manipulation” that is otherwise prohibited during certain periods (see following paragraph of this subsection (i)). The list of Invasive Exotics may be modified by the SBNF in cooperation with the BLM, the County, and appropriate stakeholders, including the mining industry. It will be limited to non-native species which show the potential to spread rapidly and are practical to completely eradicate. It will exclude non-native species that are wide-
spread within the CHMA and not practical to completely eradicate. Thus, brome grasses (*Bromus* spp.), weedy mustards (*Brassica* spp., *Sisymbrium* spp., *Hirschfeldia incana*), Russian thistle (or tumbleweed, *Salsola* spp.), and storksbill (*Erodium* spp.) would not be appropriate.

In applying the foregoing criteria, only the habitat patches that meet the criteria, applying the habitat definitions and mapping standards set forth in Appendix C, shall be regarded as revegetated and qualify for conservation credit (upon updating the Habitat Inventory to reflect the revegetation success) if such patches are part of a larger reclamation site, only those areas that meet the criteria shall be eligible for conservation credit. The operator's final monitoring report will provide quantitative data that will determine whether or not the foregoing success criteria have been met. The final monitoring data will generally be submitted ten years following initiation of revegetation, though an operator may choose to finalize the work earlier or later, depending on individual circumstances. Regardless of the date of final monitoring, the revegetated site shall not be subject to enhancement (e.g. by irrigation, weeding, supplemental planting, or seeding; collectively, “Manipulation”), subject to the exception specified under criterion *(F)* above, during a minimum three years prior to the final data collection.

(iv) Enhanced success criteria. The following success criteria are required to receive an additional 0.2 CU/acre added to the Conservation Value multiplier under the Section (a)(i) above. These criteria are not required if the additional conservation credit is not sought, and there is no intention to incorporate these enhanced criteria into future Federal Land Plans or County conditions of approval except as they relate to conservation value under the CHMS.

(a) Standard revegetation. Satisfy all the standard success criteria under Section (b)(iii), above.

(b) Cover. Achieve a mean native vegetation cover percentage of at least 75% of the mean native cover value specified in the Baseline Data.

(c) Native herbaceous component. Achieve a relative abundance of three native herbaceous species with relative abundance equivalent to or greater than that specified in the Baseline Data.

(d) Richness. Achieve a mean species richness (average species count per 0.1 acre sample plot or other unit area as applicable, depending on sample methods) that is at least 75% that of the value specified in the Baseline Data.

(e) Non-native species relative abundance. Do not exceed the average relative abundance of non-native species specified in the Baseline Data.

(i) Ecosystem Function. Demonstrate at least one quantitative measure of ecosystem function as described in Section (c)(i)(e). Section (c)(i)(e) itself requires demonstration of at least one such measure as part of the standard introduction success criteria, so a party desiring to meet both the enhanced success criteria of this subsection *(iv)* and the standard introduction success criteria of Section (c)(i)(e) must demonstrate two quantitative measures of ecosystem function.

(v) Monitoring and revegetation reporting requirements. Each mining reclamation plan must include a revegetation plan. This plan will specify target vegetation, reference data, acres that will undergo active revegetation, and a revegetation schedule. To document progress under the revegetation plan, monitoring and periodic reporting will be required. Phased plans may compile these reports into a combined report where an area covered under a single mine plan has revegetation ongoing at different stages.

(A) Annual monitoring. Operators will monitor revegetation sites annually, making each of the following observations and measures, which will be recorded and provided to the applicable Resource Management Agency or County in periodic monitoring reports (see subsection *(b)* below):

1. Survival of container plantings (where applicable);
2. Germination of seeded species, noting distribution and abundance;
3. List of native “volunteer” species, noting distribution and abundance;
(4) Measurements of vegetation cover, target species density, total species richness (list), and wildlife observations;

(5) Signs of erosion/soil loss;

(6) List of non-native species, with descriptions of abundance, distribution, and measures to control/eradicate; and

(7) Recommendations for any other needed remedial action (e.g., repairs to irrigation system, re-seeding, erosion control, or other).

(g) Reporting. On large revegetation sites, quantitative data collected and presented in the interim and final monitoring reports must be randomly sampled with sufficient replication to analyze and document the data with 90% confidence intervals about the mean values, and with a maximum confidence-interval-width of 20% of the mean value. For smaller sites, an alternate sampling protocol may be used so that the total sampling area is at least 50% of the area revegetated.

The following three reports, to be submitted to the applicable Resource Management Agency or the County with a copy provided to the Forest Service, are required to document the monitoring and status of revegetation:

(1) Initial report. This report shall include: (aa) detailed site plan, (bb) planting palette, (cc) propagule (seed, cutting, and container plant) inventory, and (dd) soil inventory (where applicable). This report must be prepared and submitted within one year of initiating revegetation.

(2) Interim (final minus 3) report. This report shall be made at the initiation of the final 3-year no-Manipulation period and shall mark the initiation of that period. This report shall summarize the monitoring data that is collected annually. It must include status of revegetation and qualitative and quantitative measures each success criterion, and it must specify any remediation prescribed. It shall also include a propagule and soil inventory update. This report is generally prepared during year 7, although may be earlier or later, depending on individual circumstances. If the operator prefers to delay initiating the 3-year period without Manipulation beyond year 7 of the revegetation effort, then a substitute “Year 7” report should be submitted, to include the contents described above and an explanation of the operator’s plans for remediation and eventual completion of the revegetation.

(3) Final report. This report shall be prepared and submitted upon completion of reclamation. It shall have the same format and content requirements as the interim report described in subsection (2) above. Regardless of the date of final monitoring, the revegetated site shall have had no Manipulation during a minimum three years prior to the final data collection (subject to the exception specified under subsection (iii)(f) above for weed control). This report shall document the extent to which the revegetation is successful and shall be used, along with field checks, by the applicable Resource Management Agency to determine whether or not the success criteria set forth in subsection (iii) above have been met.

(c) Guidelines and success criteria for introduction of Carbonate Plants. To obtain conservation credit under the CHMS for the introduction of Carbonate Plants into reclamation sites, such introductions must follow the guidelines and meet the criteria described in this Section (c), in addition to satisfying the general revegetation guidelines and success criteria of Section (b) above (note that there is no intent to propose incorporation of these provisions as revegetation requirements in future Federal Land Plans):

(i) Carbonate Plant success criteria. At the end of a minimum 3-year period without Manipulation, the introduced Carbonate Plants occurrences must be documented to show:

(A) Successful reproduction, indicated by seed production, seedling establishment, and survival of seedlings to reproductive state so that the total number of living and reproducively mature plants is at least two times the number originally planted;

(B) A demographic pattern during the minimum 3-year no-Manipulation period in which recruitment to reproductive maturity is greater than or equal to mortality, indicating a stable or growing population;
(c) Expansion of the introduction area, indicated by the presence of progeny of the introduced plants at least 10 meters beyond the bounds of the original seeded or planted area;

(b) Within the introduction area, density (plants/acre) of the Carbonate Plants no less than one standard deviation below the mean density of the same species in natural populations, as documented in Forest Service data (where density in the overall area is below this level, the operator may wish to apply for Conservation Credits on a smaller area); and

(e) Demonstration of least one quantitative measure of ecosystem function; applicable measures include, but are not limited to, soil respiration, mycorrhizal hyphal mass in soil, glomalin assays, pollinator visitation, and wildlife utilization.

(ii) Collection and salvage requirements. Where revegetation includes introduction of Carbonate Plants to mining-reclamation surfaces, the following requirements pertaining to the collection of listed species must be followed in order to obtain conservation credit under the CHMS. Where collection, salvage, and/or planting of these species occurs as part of a Mining Plan, additional standards will apply, as specified under current ESA section 10(a)(1)(A) permits issued for this purpose.

(a) Seed collection. Seed collections of listed species from public land will be at the discretion of the USFWS. Unless other arrangements are made, collections on Forest Service or BLM land will be made under the authority of the applicable 10(a)(1)(A) permit and all conditions in the permit will apply. For collections on non-federal lands, and on federal lands unless stated otherwise in the permit, the conditions described in the balance of this subsection will apply. No more than five percent of any individual plant will be collected. Collections shall not be made from more than five percent of the individuals within a population. Collections will be made systematically throughout the site to capture the majority of the genetic variation found in the sampled populations. At no time will seeds derived from different natural populations be intermingled in revegetation activities. Detailed field information will be recorded at the time of seed collection, including estimated population size, number of individuals sampled, collecting strategy employed, apparent viability of the seed, global positioning satellite (“GPS”) coordinates of the collecting location, California Natural Diversity Database element occurrence number (if any), and a photocopy of a USGS topographic map with the collection site identified. Seed collection data will be kept in permanent files and duplicated on the package where the seed is stored.

(b) Collection of cuttings. Seed collections of listed species from public land will be at the discretion of the USFWS. Unless other arrangements are made, collections on Forest Service or BLM land will be made under the authority of the applicable 10(a)(1)(A) permit and all conditions in the permit will apply. For collections on non-federal lands, and on federal lands unless stated otherwise in the permit, the conditions described in the balance of this subsection will apply. No more than five percent of any individual plant will be collected. Collections shall not be made from more than five percent of the individuals within a population. Collections will be made systematically throughout the site to capture the majority of the genetic variation found in the sampled populations. At no time will seeds or plants collected from different natural populations be intermingled in revegetation activities. Individual cuttings will be labeled with numbered metal tags corresponding to collection sites, as described above for seed collections. The tag numbers will be kept in permanent records and will be kept with the cuttings as they are incorporated into an off-site nursery or on-site revegetation sites for long-term monitoring. Tags need not identify every individual cutting, but should identify the source.

(c) Plant salvage. On sites where plants and seeds will be disturbed or destroyed by authorized activities, the limitations above will not apply. Up to 100% of plants or seed may be salvaged for use in concurrent or future reclamation. Maximum effort should be made to salvage listed carbonate plants from sites where mining or other disturbance is approved, and initial clearing and soil removal should be scheduled to
allow for seed salvage at the end of at least one growing season.

(D) Plant and seed return. Plants and seeds will be returned to the same general vegetation zone where they were collected (e.g. blackbush scrub), within no more than 1000 ft. elevation and 5 miles of the collection site, in order to ensure gene pool and ecotype integrity. Where individual plants are introduced onto a reclamation site (e.g., salvaged plants, or plants grown from seed or cuttings off-site), they will be labeled with metal tags for future growth and survival monitoring. The tag numbers will be kept in permanent records. Tag numbers need not identify every individual plant, but will identify their original source and the year they are planted. Where seed is introduced onto a reclamation site, the amount (weight) and seed collection data (above) will be kept in similar records.

(E) Documentation. Methods of Carbonate Plant introduction and progress of the introduction effort must be monitored and reported to the applicable Resource Management Agency in accordance with the monitoring requirements of Section (c)(iv), below. Operators may use Manipulation during the first few years after planting. As provided in Section (c)(i) below, however, revegetation success criteria will not be deemed to have been met until the end of a minimum 3-year period without Manipulation.

(iii) Monitoring. The following monitoring and associated documentation are required to determine successful introduction of Carbonate Plants. Introduction sites will also be subject to the revegetation monitoring described in Section (b)(v) below. Under this Section (c), for the first 3 years following planting, introduction sites shall be monitored at least annually to document survivorship and reproduction. After the initial 3-year period, formal monitoring will be done as needed to fulfill the requirements of the interim and final reports described in subsection (iv) below. In addition to the formal monitoring and reporting described here, introduction sites should be qualitatively monitored at least annually. Qualitative monitoring should document general survival and reproductive success of the Carbonate Plants and should document potential problems, such as erosion, excessive herbivory, and damaged irrigation systems.

(A) Marking: Parish’s daisy and Cushenbury buckwheat. These are perennial plants, woody at their bases, and therefore capable of being tagged. Each monitoring cycle, each new plant will be tagged and numbered to indicate the year it was detected. Each previously-existing plant will be examined, and its tag number (if present) and condition will be recorded using the following categories:

1. Healthy/reproductive (i.e., flower or seed);
2. Healthy/non-reproductive;
3. Living but evidently unhealthy;
4. Dead; or
5. Missing.

After the first three years of monitoring, new plants (not previously tagged) will be considered “progeny” of the plants initially introduced onto the site. Plants will not be tagged if they are too small to physically support the tags or if tagging is likely to damage them. Plants will be considered “established” when they are large enough to tag.

(B) Marking: Cushenbury milk-vetch and Cushenbury oxytheca. These species cannot be tagged due to their life histories. Instead, areas of occupied habitat will be identified using GPS and markers on the ground to define polygons containing a specified number of individual Carbonate Plants. For these species, parents and progeny will not be distinguished, and demographics will be inferred by total counts of individuals within the defined polygons.

(C) Mapping, all four species. The bounds of occupied habitat will be marked with colored flagging and recorded with a GPS unit. These data will be collected and recorded following the SBNF data and mapping standards. During the monitoring period or later in the year, as appropriate, a small sample of seed from introduced plants on the site will be collected and examined for apparent viability (“fill”).

(iv) Reporting. Following the first three years of monitoring, a report will be prepared to include data tables of all plants examined, GPS coordinates of the
occupied habitat’s boundaries, representative photographs of the overall site and selected individual plants. Following the second monitoring period (generally 4 years later) an interim report will be prepared with the same format and content as the report following the first 3 years, and additionally describing a demographic analysis of the occurrence. The demographic analysis shall consist of (a) calculation of the estimated half-life for each cohort; and (c) calculation and comparison of recruitment rates and death rates. This interim report initiates the final minimum 3-year no-Manipulation period. A final report (generally 3 years later) with the same format and content as the interim report will also summarize the full monitoring dataset and document the extent to which each of the Carbonate Plant success criteria (see Section (c)(i) above) have been met. The interim and final reports may be combined with the general revegetation reports described in Section (b)(v)(b), below.

(d) Authorized loss of revegetated areas. Upon issuance of a favorable CHMS Biological Opinion, losses of Carbonate Plants within the CHMA where Carbonate Plants have been introduced by operators or claim holders shall be authorized under the terms and conditions described below. The authorization provided pursuant to this Section provides relief only from the provisions of the ESA and does not relieve an owner or claim holder from any requirements of the Reclamation Regulations with respect to reclaimed or revegetated areas. This authorization also does not relieve the applicant from NEPA, CEQA, or other environmental review of any proposed new land use.

(i) Conditions to authorized loss. Occupied Habitat that occurs as a result of revegetation efforts on reclaimed land within the CHMA may be taken as necessary to carry out mining activities without any Compensation Requirement if the following conditions are met:

(a) The introduction effort, including a precise description of the location, has been reported to the applicable Resource Management Agency or the County in advance of the introduction work itself.

(b) The introduction effort proposed to be lost has complied with all of the seed collection and salvage requirements described in Section (c)(iii) above.

(c) The introduction site to be lost must not be the only remaining living material salvaged (as seed, cuttings, or whole plants) from an occurrence lost to previous land use changes unless a second salvage effort (from the introduced occurrence proposed to be lost) has been approved by the applicable Resource Management Agency or the County. Where operators salvage plant material from sites to be developed as quarries, waste areas, or other facilities, they should carefully plan the locations where these salvaged materials are introduced.

(ii) Coverage provided. When all of the conditions set forth in subsection (i) above are satisfied, the following coverage under the CHMS Biological Opinion shall apply:

(A) Any future impacts or proposed impacts to the Carbonate Plants occurring as a consequence of introductions carried out in compliance with this Section (d) will not be subject to further review or enforcement action under the ESA and will not be subject to any Compensation Requirement under the CHMS.

(b) Collection of seed from living plants for purposes of revegetation activities will be permitted on public or private land, in compliance with USFWS permits, as applicable.

(c) All occurrences of Carbonate Plants discovered within a revegetation site implemented under the CHMS shall be treated as resulting from the introduction.

(iii) Not applicable to Reserve Contributions. This Section (d) shall not permit any habitat disturbance on land that has been contributed to the Habitat Reserve as either a Permanent Contribution or a Relocatable Contribution. In the case of a Relocatable Contribution, however, habitat disturbance may be permitted hereunder after the parcel has been replaced in accordance with Section 10(b)(ii) of the CHMS.
Appendix F: Conservation Credit Worksheets

Contents

1. Reserve Contribution Valuation Worksheet, p. 76
2. Compensation Requirement Worksheet, p. 77
Reserve Contribution Valuation Worksheet

Use this form to determine the number of Conservation Credits to be received for a given Reserve Contribution of a parcel of land. For multiple discontiguous parcels, use multiple worksheets.

1. Enter the Conservation Value of the parcel

2a. Enter the lineal mileage of any portion of the edge of the parcel that meets Uncommitted Category lands

2b. Enter the lineal mileage of any portion of the edge of the parcel that meets existing Mining Category lands

2c. Enter the lineal mileage of any portion of the edge of the parcel that meets the existing Habitat Reserve and that was previously Category D or P land

2d. Enter the lineal mileage of any portion of the edge of the parcel that meets the existing Habitat Reserve and that was previously Category M land

2e. Enter line 2a × 12

2f. Enter line 2b × 24

2g. Enter line 2c × 12

2h. Enter line 2d × 24

2i. Enter line 2e + line 2f – line 2g – line 2h (can be a negative number; this result is the Net Edge Adjustment)

3. Enter line 1 – line 2i (if negative, enter 0); this result is the Adjusted Conservation Value

4. If the parcel is being contributed as a Permanent Contribution, enter 1.00; if as a Relocatable Contribution, enter 0.50 (the permanence factor)

5. Enter line 3 × line 4; this result is the Conservation Credits that would be given for contributing the parcel
Compensation Requirement Worksheet

Use this form to determine the Compensation Requirement for obtaining ESA Compliance for a given parcel of land. For multiple discontiguous parcels, use multiple worksheets.

1. Enter the Conservation Value of the parcel

2a. Enter the lineal mileage of any portion of the edge of the parcel that meets Uncommitted Category lands

2b. Enter the lineal mileage of any portion of the edge of the parcel that meets the existing Habitat Reserve

2c. Enter the lineal mileage of any portion of the edge of the parcel that meets existing Mining Category lands

2d. Enter line 2a \times 12

2e. Enter line 2b \times 24

2f. Enter line 2c \times 12

2g. Enter line 2d + line 2e – line 2f (can be a negative number); this result is the Net Edge Adjustment

3. Enter line 1 + line 2g (if negative, enter 0); this result is the Adjusted Conservation Value

4. Enter line 3 \times 3.00 (the Compensation Ratio); this result is the Compensation Requirement in terms of Conservation Credits
Appendix G: Edge Effect Examples

1. General Edge Effect Examples

Each example on this page involves one of the numbered parcels in the illustration to the right. Each numbered parcel consists of 40 acres and has a Conservation Value of 40 cu (1.00 cu/acre).

The examples in the table below demonstrate how the Net Edge Adjustment operates to affect the number of Conservation Credits given for Reserve Contributions. Each column presents the calculation of the Conservation Credits that would be given for making a Reserve Contribution of one of the numbered parcels in the illustration. The line numbers at the left edge of the table correspond to the line numbers on the Reserve Contribution Calculation Worksheet in Appendix F.

The examples in the table on the following page demonstrate how the Net Edge Adjustment operates to affect the Compensation Requirement for ESA Compliance. Each column presents the calculation of the Compensation Requirement for obtaining ESA Compliance to mine one of the numbered parcels in the illustration. The line numbers at the left edge of the table correspond to the line numbers on the Compensation Requirement Worksheet in Appendix F.

<table>
<thead>
<tr>
<th>Conservation Credits Available for Reserve Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CV of parcel</td>
</tr>
<tr>
<td>2a Edge ag. Uncommitted</td>
</tr>
<tr>
<td>2b Edge ag. Mining</td>
</tr>
<tr>
<td>2c Edge ag. Reserve (contrib. previously D or P)</td>
</tr>
<tr>
<td>2d Edge ag. Reserve (contrib. previously Cat. M)</td>
</tr>
<tr>
<td>2e Lines 2a x 12</td>
</tr>
<tr>
<td>2f Lines 2b x 24</td>
</tr>
<tr>
<td>2g Lines 2c x 12</td>
</tr>
<tr>
<td>2h Lines 2d x 24</td>
</tr>
<tr>
<td>2i Lines 2e + 2f – 2g – 2h</td>
</tr>
<tr>
<td>3 Lines 1 – 2i (ACV)</td>
</tr>
<tr>
<td>4 Permanence factor</td>
</tr>
<tr>
<td>5 Lines 3 x 4 = Conservation Credits given</td>
</tr>
</tbody>
</table>
2. Edge Effect
Examples with Curvilinear Edges

The examples on the following pages show how the Net Edge Effect adjustment affects Conservation Values using the scenario illustrated to the right. Based upon this scenario, a mining company would establish the limits of disturbance taking into account the cost of ESA Compliance and the value and accessibility of the mineral deposits within the claim, as well as other factors. The three examples below compare three configurations of limits of disturbance to provide an idea of how a company might consider the cost of ESA Compliance under the CHMS when establishing limits of disturbance for a mining project. The examples do not attempt to consider mineral value and other factors.

For each example, the cost of ESA Compliance is calculated for the limits of disturbance as shown in the example. Then the Conservation Credits are calculated that would be available for making a Reserve Contribution of the remainder of the claim (the area outside of the limits of disturbance). Note that it is an additional decision of the mining company (or claim holder) whether or not to make a Reserve Contribution of the portion of the claim avoided. If a Reserve Contribution is not made, then the mining company or claim holder retains the option to obtain ESA Compliance for the remainder area and mine it in the future. On the other hand, making a Reserve Contribution of the area would help to minimize the current net cost of ESA Compliance.

![Diagram](image-url)
Curvilinear Edge Effect Examples: Summaries

<table>
<thead>
<tr>
<th>Example</th>
<th>Area of disturbance</th>
<th>ESA Compliance cost</th>
<th>Credits for Reserve Contrib. of remainder</th>
<th>Net ESA Compliance cost after Reserve Contrib.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>160.0 acres</td>
<td>285.2 CU (1.78 CU/acre of mining)</td>
<td>n/a</td>
<td>n/a</td>
<td>This is a baseline case that simply ignores the habitat present.</td>
</tr>
<tr>
<td>B</td>
<td>129.5 acres</td>
<td>206.8 CU (1.60 CU/acre of mining)</td>
<td>7.8 CU (0.26 CU/acre of contribution)</td>
<td>198.9 CU (1.54 CU/acre of mining)</td>
<td>In this case, the limits of disturbance avoid the larger habitat patch but include the smaller habitat patch that is deeper in the mining area. This would be the most efficient design if all land had the same economic value.</td>
</tr>
<tr>
<td>C</td>
<td>97.6 acres</td>
<td>174.9 CU (1.79 CU/acre of mining)</td>
<td>7.8 CU (0.13 CU/acre of contribution)</td>
<td>167.0 CU (1.71 CU/acre of mining)</td>
<td>This case avoids all habitat patches, but is actually less efficient than both Examples “A” and “B.” This is primarily due to the large Net Edge Adjustments associated with preserving the additional habitat. This example also demonstrates how the edge adjustment can devalue a Reserve Contribution with high edge effects. The number of Conservation Credits available for contributing the more northerly habitat area is zero for 31.9 acres. The Net Edge Adjustment for this contribution is −25.1 off of a pre-adjusted Conservation Value of 22.0, but the ACV cannot be less than zero.</td>
</tr>
</tbody>
</table>

The detailed calculations behind the summaries above are shown on the following two pages.
Curvilinear Edge Effect Examples: Detailed Calculations

Compensation Requirements for ESA Compliance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CV of parcel</td>
<td>95.07</td>
<td>70.87</td>
<td>48.82</td>
</tr>
<tr>
<td>2a Edge ag. Uncommitted</td>
<td>1.00</td>
<td>0.84</td>
<td>1.37</td>
</tr>
<tr>
<td>2b Edge ag. Reserve</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2c Edge ag. Mining</td>
<td>1.00</td>
<td>1.00</td>
<td>0.58</td>
</tr>
<tr>
<td>2d Lines 2a x 12</td>
<td>12.00</td>
<td>10.06</td>
<td>16.41</td>
</tr>
<tr>
<td>2e Lines 2b x 24</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2f Lines 2c x 12</td>
<td>12.00</td>
<td>12.00</td>
<td>6.94</td>
</tr>
<tr>
<td>2g Lines 2d + 2e − 2f</td>
<td>-</td>
<td>(1.94)</td>
<td>9.47</td>
</tr>
<tr>
<td>3 Lines 1 + 2g (ACV)</td>
<td>95.07</td>
<td>68.92</td>
<td>58.29</td>
</tr>
<tr>
<td>4 Line 3 x 3.00 = ESA Compliance cost</td>
<td>285.21</td>
<td>206.77</td>
<td>174.87</td>
</tr>
<tr>
<td>ESA Compliance cost per acre of mining</td>
<td>1.78</td>
<td>1.60</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Conservation Credits Available for Reserve Contributions

<table>
<thead>
<tr>
<th></th>
<th>Examp. A</th>
<th>Examp. B</th>
<th>Examp. C</th>
<th>(C1 + C2)</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CV of parcel</td>
<td>-</td>
<td>24.20</td>
<td>46.25</td>
<td>24.20</td>
<td>22.05</td>
<td></td>
</tr>
<tr>
<td>2a Edge ag. Uncommitted</td>
<td>-</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>2b Edge ag. Mining</td>
<td>-</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>2c Edge ag. Reserve</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(contrib. previously Uncommitted)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d Edge ag. Reserve</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(contrib. previously Mining)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2e Lines 2a x 12</td>
<td>-</td>
<td>6.75</td>
<td>6.75</td>
<td>6.75</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>2f Lines 2b x 24</td>
<td>-</td>
<td>9.61</td>
<td>9.61</td>
<td>9.61</td>
<td>24.33</td>
<td></td>
</tr>
<tr>
<td>2g Lines 2c x 12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2h Lines 2d x 24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2i Lines 2e + 2f − 2g − 2h</td>
<td>-</td>
<td>16.36</td>
<td>16.36</td>
<td>16.36</td>
<td>25.08</td>
<td></td>
</tr>
<tr>
<td>3 Lines 1 – 2i (ACV)</td>
<td>-</td>
<td>7.84</td>
<td>7.84</td>
<td>7.84</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4 Permanence factor</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5 Lines 3 x 4 = Credits for Reserve Contrib. of remainder</td>
<td>-</td>
<td>7.84</td>
<td>7.84</td>
<td>7.84</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Credits per acre for Reserve Contrib. of remainder</td>
<td>-</td>
<td>0.26</td>
<td>0.13</td>
<td>0.26</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Net ESA Compliance cost after Reserve Contrib.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>285.21</td>
<td>198.93</td>
<td>167.03</td>
</tr>
<tr>
<td>Per acre of mining</td>
<td>1.78</td>
<td>1.54</td>
<td>1.71</td>
</tr>
</tbody>
</table>
Curvilinear Edge Effect Example: Areas and Perimeters

<table>
<thead>
<tr>
<th>Shape Areas/CVs</th>
<th>Acreage</th>
<th>CV/ac.</th>
<th>CV</th>
<th>Perim. total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.6787</td>
<td>1.25</td>
<td>2.0984</td>
<td>0.1991</td>
</tr>
<tr>
<td>B (incl. A)</td>
<td>11.3651</td>
<td>1.04</td>
<td>11.7848</td>
<td>0.6562</td>
</tr>
<tr>
<td>B – A</td>
<td>9.6864</td>
<td>1.00</td>
<td>9.6864</td>
<td>0.8553</td>
</tr>
<tr>
<td>C (incl. A & B)</td>
<td>31.8925</td>
<td>0.69</td>
<td>22.0485</td>
<td>1.0761</td>
</tr>
<tr>
<td>D</td>
<td>97.6371</td>
<td>0.50</td>
<td>48.8186</td>
<td>1.9402</td>
</tr>
<tr>
<td>C + D (incl. A & B)</td>
<td>129.5296</td>
<td>0.55</td>
<td>70.8670</td>
<td>1.8443</td>
</tr>
<tr>
<td>E</td>
<td>17.8483</td>
<td>1.00</td>
<td>17.8483</td>
<td>0.8820</td>
</tr>
<tr>
<td>F</td>
<td>12.7117</td>
<td>0.50</td>
<td>6.3558</td>
<td>0.6689</td>
</tr>
<tr>
<td>E + F</td>
<td>30.5600</td>
<td>0.79</td>
<td>24.2042</td>
<td>0.9631</td>
</tr>
<tr>
<td>All</td>
<td>160.0000</td>
<td>0.59</td>
<td>95.0712</td>
<td>2.0000</td>
</tr>
</tbody>
</table>

Perimeter edges (li. mi.)

- Edge1: 0.4219
- Edge2: 0.0781
- Edge3: 0.5000
- Edge4: 0.2187
- Edge5: 0.1094
- Edge6: 0.1719
- Edge7: 0.2031
- Edge8: 0.0781
- Edge9: 0.1563
- Edge10: 0.0625
- Edge11: 0.5917
- Edge12: 0.4006
- Edge13: 0.2939
Appendix H: Credit Registration

Private participation in the CHMS consists primarily in “transactions” involving Conservation Credits. Parties can receive Conservation Credits for making Reserve Contributions, and they can “spend” Conservation Credits to obtain ESA Compliance. They can also sell Conservation Credits to another private party. To track the various types of Conservation Credit transactions, the CHMS has a “Credit Registry” administered by the Forest Service. Below is an example of the kinds of procedures that the Forest Service may adopt for credit registration.

 Except as specifically indicated to the contrary, capitalized terms in this appendix shall have the meanings ascribed to them in the CHMS document to which this appendix is attached.

(a) Credit Registry. The Credit Registry is a database maintained by the Forest Service that tracks the creation, use, and transfer of Conservation Credits under the CHMS, along with various records and legal documents related to these transactions. The Forest Service may make available certain information from the Credit Registry on the World Wide Web. The basic procedures for the three types of Conservation Credit transactions are described in the following three subsections, which the Forest Service may modify from time to time.

(b) Credit Creation for Reserve Contributions. The following process applies when a landowner or claim holder wishes to make a Reserve Contribution and receive Conservation Credits:

(i) Contribution Assessment. The applicant submits to the Forest Service a “Contribution Assessment Application” that includes (A) a plat of the land to be contributed at an appropriate map scale, (b) a statement of the intended means of contribution (transfer of ownership, relinquishment of claim, a Use Restriction Agreement (in the case of a Relocatable Contribution), or a Surface Entry Restriction (in the case of a contribution of a split-estate contribution) and (c) a contribution assessment fee. Within five (5) business days, the Forest Service will prepare a “Contribution Assessment” that will state, as of the date of issuance, the number of Conservation Credits that would be issued to the applicant if a Reserve Contribution were made of the subject parcel.

(ii) Reserve Contribution Application. If the applicant elects to proceed after receiving the Conservation Value Assessment, the applicant submits to the Forest Service a “Reserve Contribution Application,” including (A) a completed and signed amendment to the MOU, (b) a contribution processing fee (to cover the cost of the land assessment and closing steps described below), and (c) a completed and signed grant deed, mine claim quitclaim, Use Restriction Agreement, or Surface Entry Restriction (depending on the intended means of contribution).

(iii) Land Assessment. Upon receipt of a complete Reserve Contribution Application, the Forest Service shall perform a “Land Assessment” (by itself and/or through parties with which it subcontracts), which includes the following:

(A) A title search and evaluation of any encumbrances on the subject property;

(B) A Phase I environmental study;

(C) Site reconnaissance to determine the level of human disturbance of the property in the form of (i) trash and debris; (ii) extent of soil and vegetation disturbance from off-road vehicle use, grazing, and other uses; and (iii) any ongoing use;

(D) If needed in order to supply a correct legal description of the subject property, preparation of a survey, a record of survey, and/or an approved subdivision in compliance with the California Subdivision Map Act; and

(E) A report prepared by the Forest Service (in coordination with the applicable Resource Management Agency, if not the Forest Service) summarizing the contents of the Land Assessment, stating whether
the subject property meets the “Land Acceptance Criteria” established by the applicable Resource Management Agency, and, if not, listing the remedial measures that must be undertaken to meet the Land Acceptance Criteria.

If the subject property does not meet the Land Acceptance Criteria, follow-up Land Assessments may be subject to additional fees. The Forest Service may require applicants to engage outside parties to perform some or all of the Land Assessment work on behalf of the Forest Service, but at the expense of the applicant.

(iv) Closing. Once the subject property is determined to have met the Land Acceptance Criteria, the following steps occur to complete the closing of the Reserve Contribution:

(A) The applicant pays a closing fee to cover costs of title insurance, recordation, and processing the closing;

(B) The Forest Service (in coordination with the applicable Resource Management Agency, if not the Forest Service) verifies the Contribution Assessment, which can change over time with changes in the Habitat Inventory or shifts in the land use categories of adjacent parcels, and obtains the applicant’s approval if the Conservation Credits to be issued have decreased;

(C) The Forest Service arranges for a policy of title insurance to be issued to the Resource Management Agency (not required when the contribution is by relinquishment of claims);

(D) The Forest Service files the record of survey, if one was required;

(E) The Forest Service files and/or records the instrument of conveyance (except in the case of a Use Restriction Agreement, which is only accepted, not recorded);

(F) The Forest Service records the transaction in the Credit Registry; and

(G) The Forest Service issues a Credit Verification Letter to the applicant indicating the number of Conservation Credits that have been registered in his/her/its name.

(v) Contingent Contributions (optional). Applicants have the option to make Contingent Contributions pursuant Section 10(d) using the process described in this subsection.

(A) To make a Contingent Contribution, the applicant shall include with its closing fee, paid pursuant to subsection (iv)(A) above, (i) a request to make the Reserve Contribution a Contingent Contribution, (ii) a description of the requested contingency or contingencies, and, optionally, (iii) a “Compliance Evaluation” (see subsection (c)(i) below) for one or more parcels.

(B) If the application is complete and the requested contingencies are consistent with those permitted under Section 10(d), then the Forest Service shall modify the closing process under subsection (iv) above by adding to the closing conditions the satisfaction of the contingencies requested by the applicant.

(C) If the application is either incomplete or the requested contingencies are inconsistent with Section 10(d), then the Forest Service shall reject the application and return it to the applicant.

(D) If the applicant has submitted a Compliance Evaluation, and the Forest Service can verify that the Compensation Requirement stated in the Compliance Evaluation is valid as of the date of application, then the Forest Service shall add an endorsement to the Compliance Valuation to the effect that the Compensation Requirement stated in the Compliance Evaluation is locked in so long as the Compensation Requirement is met entirely using Conservation Credits issuing from the subject Contingent Contribution.

(c) Credit use for ESA Compliance. The following process applies when a mining company, landowner, or claim holder wishes to obtain ESA Compliance using Conservation Credits:

(i) Compliance Evaluation. The applicant submits to the Forest Service a “Compliance Application” that includes (A) a project plan, at an appropriate map scale, depicting the land on which mining activity is to occur, with boundary lines separating the limits of surface disturbance from areas not to be disturbed; and

(a) a fee for processing of the compliance evaluation. Within five (5) business days, the Forest Service will
prepare (in coordination with the applicable Resource Management Agency, if not the Forest Service) a “Compliance Evaluation” that will state, as of the date of issuance, the Compensation Requirement, in terms of Conservation Credits, for mining activities on the subject property. Note that the applicant may be a mining company that does not own the land or claim, but that the owner or claim holder must co-sign all applications required under this subsection (c).

(ii) Compliance Verification Letter. The applicant obtains a Compliance Verification Letter, stating that the proposed project has obtained ESA Compliance under the CHMS, as follows:

(a) The applicant submits to the Forest Service (i) one or more Credit Verification Letters with a face value that is greater than or equal to the Compliance Requirement, (ii) an executed amendment to the MOU adding applicant as a party with respect to the proposed project, and (iii) payment of a fee for processing the Compliance Verification Letter.

(b) The Forest Service verifies the Compensation Requirement, which can change over time with changes in the Habitat Inventory, and obtains the applicant’s approval if the Compliance Requirement has increased.

(c) The Forest Service verifies that no suspension or partial suspension of permitting authority under the CHMS Biological Opinion is in place that applies to the proposed project.

(d) The Forest Service verifies the Compensation Requirement, which can change over time with changes in the Habitat Inventory, and obtains the applicant’s approval if the Compliance Requirement has increased.

(iii) Mining Plan. In the process of obtaining a矿业 Plan from the Resource Management Agency, the applicant submits the Compliance Verification Letter obtained for the project as evidence of full compliance with the ESA with respect to the Carbonate Plants and any other species that may be addressed by the CHMS in the future. The Resource Management Agency will be required to verify that the limits of surface disturbance shown in the Compliance Verification Letter match the limits of surface disturbance shown in the Mining Plan.

(d) Credit transfer. Any Credit Holder may transfer any number of Conservation Credits registered in his/her/its name to any other party. Such a transfer may be the result of any kind of bargain between the parties or can be a gift or donation from one party to another. For any such transfer to be effective, however, it must be registered in the Credit Registry. The process for transferring Conservation Credits is as follows:

(i) The transferor and transferee both sign a “Transfer Request,” with the transferor’s Credit Verification Letter attached, providing basic information about the parties and indicating the number of Conservation Credits to be transferred.

(ii) Either party submits the Transfer Request, along with a fee for processing the transfer, to the Forest Service.

(iii) The Forest Service records the transfer in the Credit Registry and issues a new Credit Verification Letter to the transferee for the number of Conservation Credits transferred and, if applicable, issues a new Credit Verification Letter to the transferor for the difference between the number of Conservation Credits shown on the old Credit Verification Letter and the number of Conservation Credits transferred to the transferee.
Appendix I: Maps

Contents

1. Existing Conditions, p. 90
2. Furnace Unit Existing Conditions, p. 91
3. CHMS Categories, p. 92
4. Habitat, p. 93
5. Conservation Value, p. 94
6. Furnace Unit Initial Configuration, p. 95
As a concerned citizen I attended the scoping meeting that was held at the Big Bear Discovery Center on the evening of March 20. Previously, on March 15, I attended a presentation by representatives of the Mitsubishi plant on their reclamation efforts currently in process. This presentation was given to members of the Big Bear Group of the Sierra Club and their guests. I feel very comfortable with my understanding of the necessity to obtain high quality limestone for use in cement, pharmaceuticals, cosmetics and a myriad of other products. I also understand that the quarries currently in use and projected for future use by the Mitsubishi plant contain limestone of the highest quality. Photographs were shown of the current reclamation efforts in place and photos of the Big Horn Sheep that live in the area were also presented at the Sierra Club meeting.

I have many concerns regarding the expansion of the quarry and intend to enumerate them below.

The Big Horn Sheep are not the only residents of the expansion area. There are many Golden Eagles who have nested in the area for generations. These Eagles depend upon rodents and other small creatures for their food. When the foliage and earth are scraped away these small animals will lose their
habitat and leave the area. When the Golden Eagles no longer can hunt for food they will also depart the area. We were told by the Mitsubishi representatives that the Big Horn Sheep are actually happy with the quarries because the scraping away of foliage and earth makes them less susceptible to mountain lion attacks. But the Big Horn Sheep need foliage to eat and as the foliage is removed and their food choices become harder to find they will also depart the area. Another concern is for the water available to sustain these creatures. I am not convinced that the mining that will be undertaken will not pollute the water in the springs and creeks. I don't feel that the barrels of water Mitsubishi is providing for the sheep will suffice over time and will increase the sheep's dependency on humans.

There are many native plants in this area that will be lost forever if this expansion is allowed to go through. I do understand that Mitsubishi intends to stockpile the soil, seeds collected and plants that can be salvaged. The intent is that they will be replanted during the reclamation efforts. Unfortunately this does not help the animals and birds that are currently living in the area and does not assure their return at some future time when the reclamation is done. We will lose the habitat and the creatures that live there and will lose the environmental and educational opportunities that they currently provide. I, for one, do not have 125 years to wait for them to return.

A question was asked at the Sierra Club meeting regarding the acres of land on the east side of Highway 18 that are covered with a layer of a solid cement-like substance. Mitsubishi reps replied that this was, in fact, cement, but it was the result of mining by a previous owner of the quarries and that it happened back in the 50's. The representatives stated that Mitsubishi did not intend to do any reclamation of that area because the current owners did not cause the problem. I am concerned about this 125 year project. What assurances are being given to make sure at some future point the plant is sold and the new owners have this same “not my problem” attitude?

The reclamation that is currently being done by Mitsubishi and shown in the photos provided at the meeting indicate that the steep "stair step benches" of the quarry will be left to erode and soften over time and that just the tops of these benches are being reclaimed with plants. Mitsubishi intends to
slope each bench inward during the reclamation process. However in years with much rain and snow and without flora to keep the earth in place these steep benches will allow dirt to cascade down layer by layer and destroy the plantings that have been made through these reclamation efforts. In years of drought the top layer will blow away in the high winds that buffet the area. Adding more of these benches in the expansion area will only compound the problem and if any animals are still living in these areas at that time they will have their habitat destroyed once again. Since Mitsubishi employs not only heavy equipment operators but also demolition experts it does seem as if the current reclamation efforts could result in a much more natural looking setting that would encourage the growth of native plants and animals. When the steep sides of these benches are softened they will provide an area where seeds can more easily collect and germinate.

I currently feel highly skeptical of any future reclamation efforts in this expansion project. I feel that the quarries no longer in use should be completely reclaimed before any other mining is allowed to commence.

At the scoping session I observed the computer generated photos showing how the ridge will appear at various times during the 125 year projected life of this new mine. While it is fascinating that computers can generate these photos, we must remember that the computer generates the photo from the information entered into the program. These pictures may not display the actual result if the statistics provided do not reflect the actual weather patterns and reclamation efforts done. We are in a period of climate change, as has been demonstrated in the weather of the last few years. I don’t believe that anyone can actually predict how these ridges will appear in 125 years. The photos provided are just a “best guess scenario”.

As a resident of the Big Bear I treasure the beauty that surrounds this valley. I treasure the clean air we are able to breathe here. This expansion will bring much more truck traffic and with it much more air pollution from these trucks. There will be many more trucks on Highway 18 through Lucerne and this could cause more traffic accidents.

Mitsubishi does attempt to control the dust generated by the mining operation and from all of the equipment on the dirt roads currently. When the new roads are being cut we will have to expect much more dust in the air and a lessening of air quality.
We occasionally hear blasting at the plant but would have to expect to hear much more blasting if this project is allowed to continue. This noise pollution is another factor that will cause distress for the animals, birds and humans not only living near the mines but also those that live in Big Bear Valley and the surrounding areas.

I believe that no matter what the name given to this project it is still mountain top removal. I was horrified when I observed first hand the results of mountain top removal mining in the Navajo Nation of New Mexico and in the mountains of West Virginia. Once it starts it will continue and we just cannot quietly stand by and let this happen here.

In closing, I request that this project be allowed to go forward only if and when my concerns and those of other citizens are addressed satisfactorily. I also request that a citizen’s advisory board be assembled to assure that they are met satisfactorily. This advisory board should be composed of representatives of the San Bernardino Forest Service, USDA, Big Bear Forest Rangers, California Fish and Game officials, environmental experts, and also from the Mitsubishi plant along with an equal number of concerned citizens without ties to Mitsubishi or any other mining company.

Linda Quiroz
PO Box 2285
Big Bear City, CA 92314
909-584-8595
Re: Mitsubishi Cement Corp. South Quarry Project:

The Lucerne Valley Economic Development Association (LVEDA) strongly supports this project. MCC is a major employer and benefactor in our community. Cement is critical to our nation's infrastructure. MCC operates under the highest of environmental standards.

Chuck Bell, Pres.
P. O. Box 193
Lucerne Valley, CA 92356
760 964 3118
chuckb@sisp.net

(I tried to send this yesterday - not sure it went through)
Notice of Preparation of a CEQA Document for the Mitsubishi Cement Company South Quarry Project

The South Coast Air Quality Management District (SCAQMD) appreciates the opportunity to comment on the above-mentioned document. The SCAQMD’s comments are recommendations regarding the analysis of potential air quality impacts from the proposed project that should be included in the draft CEQA document. Please send the SCAQMD a copy of the Draft EIR upon its completion. Note that copies of the Draft EIR that are submitted to the State Clearinghouse are not forwarded to the SCAQMD. Please forward a copy of the Draft EIR directly to SCAQMD at the address in our letterhead. In addition, please send with the draft EIR all appendices or technical documents related to the air quality and greenhouse gas analyses and electronic versions of all air quality modeling and health risk assessment files. These include original emission calculation spreadsheets and modeling files (not Adobe PDF files). Without all files and supporting air quality documentation, the SCAQMD will be unable to complete its review of the air quality analysis in a timely manner. Any delays in providing all supporting air quality documentation will require additional time for review beyond the end of the comment period.

Air Quality Analysis
The SCAQMD adopted its California Environmental Quality Act (CEQA) Air Quality Handbook in 1993 to assist other public agencies with the preparation of air quality analyses. The SCAQMD recommends that the Lead Agency use this Handbook as guidance when preparing its air quality analysis. Copies of the Handbook are available from the SCAQMD’s Subscription Services Department by calling (909) 396-3720. The lead agency may wish to consider using land use emissions estimating software such as the recently released CalEEMod. This model is available on the SCAQMD Website at: http://www.aqmd.gov/ceqa/models.html.

The Lead Agency should identify any potential adverse air quality impacts that could occur from all phases of the project and all air pollutant sources related to the project. Air quality impacts from both construction (including demolition, if any) and operations should be calculated. Construction-related air quality impacts typically include, but are not limited to, emissions from the use of heavy-duty equipment from grading, earth-loading/unloading, paving, architectural coatings, off-road mobile sources (e.g., heavy-duty construction equipment) and on-road mobile sources (e.g., construction worker vehicle trips, material transport trips). Operation-related air quality impacts may include, but are not limited to, emissions from stationary sources (e.g., boilers), area sources (e.g., solvents and coatings), and vehicular trips (e.g., on- and off-road tailpipe emissions and entrained dust). Air quality impacts from indirect sources, that is, sources that generate or attract vehicular trips should be included in the analysis.

The SCAQMD has developed a methodology for calculating PM2.5 emissions from construction and operational activities and processes. In connection with developing PM2.5 calculation methodologies, the SCAQMD has also developed both regional and localized significance thresholds. The SCAQMD requests that the lead agency quantify PM2.5 emissions and compare the results to the recommended PM2.5 significance thresholds. Guidance for calculating PM2.5 emissions and PM2.5 significance thresholds can be found at the following internet address: http://www.aqmd.gov/ceqa/handbook/PM2_5/PM2_5.html.
In addition to analyzing regional air quality impacts the SCAQMD recommends calculating localized air quality impacts and comparing the results to localized significance thresholds (LSTs). LST’s can be used in addition to the recommended regional significance thresholds as a second indication of air quality impacts when preparing a CEQA document. Therefore, when preparing the air quality analysis for the proposed project, it is recommended that the lead agency perform a localized significance analysis by either using the LSTs developed by the SCAQMD or performing dispersion modeling as necessary. Guidance for performing a localized air quality analysis can be found at http://www.aqmd.gov/ceqa/handbook/LST/LST.html.

In the event that the proposed project generates or attracts vehicular trips, especially heavy-duty diesel-fueled vehicles, it is recommended that the lead agency perform a mobile source health risk assessment. Guidance for performing a mobile source health risk assessment (“Health Risk Assessment Guidance for Analyzing Cancer Risk from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis”) can be found on the SCAQMD’s CEQA web pages at the following internet address: http://www.aqmd.gov/ceqa/handbook/mobile_toxic/mobile_toxic.html. An analysis of all toxic air contaminant impacts due to the decommissioning or use of equipment potentially generating such air pollutants should also be included.

Mitigation Measures

In the event that the project generates significant adverse air quality impacts, CEQA requires that all feasible mitigation measures that go beyond what is required by law be utilized during project construction and operation to minimize or eliminate significant adverse air quality impacts. To assist the Lead Agency with identifying possible mitigation measures for the project, please refer to Chapter 11 of the SCAQMD CEQA Air Quality Handbook for sample air quality mitigation measures. Additional mitigation measures can be found on the SCAQMD’s CEQA web pages at the following internet address: www.aqmd.gov/ceqa/handbook/mitigation/MM_intro.html. Additionally, SCAQMD’s Rule 403 – Fugitive Dust, and the Implementation Handbook contain numerous measures for controlling construction-related emissions that should be considered for use as CEQA mitigation if not otherwise required. Other measures to reduce air quality impacts from land use projects can be found in the SCAQMD’s Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning. This document can be found at the following internet address: http://www.aqmd.gov/prdas/aqguide/aqguide.html. In addition, guidance on siting incompatible land uses can be found in the California Air Resources Board’s Air Quality and Land Use Handbook: A Community Perspective, which can be found at the following internet address: http://www.arb.ca.gov/ch/handbook.pdf. CARB’s Land Use Handbook is a general reference guide for evaluating and reducing air pollution impacts associated with new projects that go through the land use decision-making process. Pursuant to state CEQA Guidelines §15126.4 (a)(1)(D), any impacts resulting from mitigation measures must also be discussed.

Data Sources

SCAQMD rules and relevant air quality reports and data are available by calling the SCAQMD’s Public Information Center at (909) 396-2039. Much of the information available through the Public Information Center is also available via the SCAQMD’s World Wide Web Homepage (http://www.aqmd.gov).

The SCAQMD is willing to work with the Lead Agency to ensure that project-related emissions are accurately identified, categorized, and evaluated. If you have any questions regarding this letter, please call Ian MacMillan, Program Supervisor, CEQA Section, at (909) 396-3244.

Sincerely,

Ian MacMillan
Program Supervisor, CEQA Inter-Governmental Review Planning, Rule Development & Area Sources

IM
SBC120312-02
Control Number
Dear Ms. Surdzial,

We would like to thank you for the opportunity to submit scoping comments on the Environmental Impact Report/Environmental Impact Statement (EIR/EIS) for the Mitsubishi Cement Corporation South Quarry Project. Friends of Fawnskin is a Big Bear Valley nonprofit organization with over 400 members, all of whom would be impacted by this proposed project.

We have serious concerns about the both severity and duration of the impacts that would be created by this proposed project. The following comments detail the concerns that we believe need to be addressed in the EIR/EIS analysis.

- The NOP states that as an avoidance/minimization measure to prevent weeds on-site, no area will be allowed to have more than 20% of the ground cover provided by nonnative plant species. This 20% seems extraordinarily high as a limit on nonnative species to be able to maintain a sustainable native habitat, especially in and around this fragile carbonate area. How was this percentage determined as sufficient for sustainability? Have studies been done to demonstrate what percentage of nonnative species can be present without those nonnative intruders taking over or degrading the surrounding fragile native and listed-species habitats? What is the justification for allowing any nonnative species in the area?
• An administrative withdrawal from specified unpatented mining claims held by Mitsubishi seems insufficient as mitigation when those withdrawals depend upon a renewal every 20 years for them to continue. Mitigations are ideally supposed to extend into perpetuity. For this proposed project, it would seem appropriate that at a minimum the mitigations be assured to last at least as long as the length of the project. Since a congressional withdrawal would provide a better chance of that happening, what is the justification for using only an administrative withdrawal rather than a congressional withdrawal for these claims? Given the duration of the proposed project and the extent of the potential impacts to endangered species and their critical habitat, should not a congressional withdrawal be required?

• Given the length of this proposed project, a follow on reclamation of only 5 years seems extremely short. What is the criteria for determining this period? What studies have demonstrated that this would be sufficient to reestablish the long-term sustainability of the fragile carbonate habitat?

• With the recent expansion project of the Omya Butterfield-3 Mine in the same critical habitat area, the cumulative impacts of these projects must be analyzed. In addition, these cumulative impacts must be taken into consideration for the evaluation of effectiveness of any and all mitigations offered.

• Besides the four listed threatened or endangered carbonate-endemic species discussed in the initial study, other issues regarding impacts to biological resources that must be addressed in the EIR/EIS include such species as Parish’s rock-cress (*Arabis parishii*), western burrowing owl (*Athene cunicularia*), pallid San Diego pocket mouse (*Chaetodipus fallax pallidus*), southern rubber boa (*Charina umbratica*), Townsend’s big-eared bat (*Corynorhinus townsendii*), Andrew’s marble butterfly (*Euchlose hyantis andrewsi*), western mastiff bat (*Eumops perotis californicus*), bald eagle (*Haliaeetus leucocephalus*), California mountain kingsnake (*Limpropeltis zonata parvirubra*), silver-haired bat (*Lasionycteris noctivagans*), long-eared myotis (*Myotis evotis*), fringed myotis (*Myotis thysanodes*), long-legged myotis (*Myotis volans*), Yuma myotis (*Myotis yumanensis*), coast horned lizard (*Phrynosoma blainvillii*), and summer tanager (*Piranga rubra*).

• The reclamation that is being done currently at the existing Mitsubishi site, where plants are reestablished on the tables at the top of the steep vertical excavation cliffs, seems to be focused only on short-term plant establishment. While commendable that reclamation efforts are being done, the current process seems to have several deficiencies. At a minimum, those deficiencies include: 1) the plant populations have a small habitat area disconnected from other populations, thus limiting their sustainability; 2) as the cliffs erode and eventually crumble down into a more natural topography, those plant populations will be buried or destroyed, again limiting any aspect of population sustainability; and 3) the area is no longer accessible so that these plant populations can be observed, studied or enjoyed by the public. While the current reclamation is taking place primarily on private land holdings, the proposed expansion is all on
public land and thus even more critical that these deficiencies be addressed and corrected. The EIR/EIS needs to address all possible alternative methods for managing the reclamation to result in a more natural setting with long-term habitat sustainability as a primary goal.

Since this proposed project would have impacts on the federally listed species and other rare plants and animals, the EIR/EIS must fully disclose and analyze the direct, indirect, and cumulative impacts of the project, as well as discuss viable alternatives to avoid the ecologically sensitive area. The presence of federally listed species in the project area also necessitates a formal consultation with the U. S. Fish and Wildlife Service under Section 7 of the Endangered Species Act.

Thank you for the opportunity to provide these comments. We look forward to reviewing the EIR/EIS for the proposed project.

Please also send us any future documents pertaining to this project and other proposed projects on the San Bernardino National Forest to the address on the letterhead above.

Sincerely,

Sandy Steers
Executive Director
May 8, 2012

Jody Noirón
San Bernardino National Forest
602 S. Tippecanoe Avenue
San Bernardino, California 92408

Subject: Notice of Intent to Prepare an Environmental Impact Statement (EIS) for the Mitsubishi South Quarry Limestone Quarry Plan of Operation

Dear Ms. Noirón:

The U.S. Environmental Protection Agency (EPA) has received the above referenced document. We appreciate the opportunity to provide our recommendations on the scope of the upcoming EIS. Our comments are provided pursuant to the National Environmental Policy Act (NEPA), the Council on Environmental Quality (CEQ) NEPA Implementation Regulations at 40 CFR 1500-1508, and our NEPA review authority under Section 309 of the Clean Air Act.

The scope of subjects that should be included in the EIS is described in the enclosed detailed comments. Topics include project purpose and need, alternatives and mitigation, water resources, air quality, climate change, vegetation and wildlife, reclamation and closure, cumulative impacts, environmental justice, tribal consultation, pollution prevention, and land use. Our detailed comments are enclosed.

We appreciate the opportunity to review this scoping notice and look forward to working with you on this project. Please send a copy of the Draft EIS to this office when it is officially filed with our Washington D.C. office. If you have any questions, please contact me at 415-972-3853 or Geselbracht.jeanne@epa.gov.

Sincerely,

Jeanne Geselbracht
Environmental Review Office

cc: Anne Surdzial, ECORP Consulting
 Tom Hall, San Bernardino National Forest
Purpose and Need

EPA recommends the EIS include a clear description of the proposed project’s purpose and need. The EIS should not simply state what the project will be or how it will look. The EIS needs to adequately identify and describe the underlying need(s) for the project and the associated objectives or outcomes. Clear descriptions of project needs and objectives set the stage for thorough consideration of a range of alternatives and their effectiveness in meeting the needs and objectives of the project.

Alternatives Analysis

The EIS should rigorously explore and objectively evaluate all reasonable alternatives, including reasonable alternatives not within the jurisdiction of your agency. 40 CFR 1502.14. The EIS should provide a clear discussion of the reasons for the elimination of alternatives which were not evaluated in detail. The document should discuss potential environmental impacts of the alternatives in comparative form, thus sharply defining the issues among the options for decision makers and the public. 40 CFR 1502.14. Reasonable alternatives could include, but are not necessarily limited to, alternative quarry sites, alternative designs for quarry facilities (e.g., waste rock piles, roads, conveyors, stockpiles, etc.), alternative closure designs, smaller project, and different timelines.

In accordance with 40 CFR 1502.24, agencies are required to insure the professional integrity, including scientific integrity, of the discussions and analyses in the EIS. Any methodologies used should be identified, and the scientific and other sources relied upon for conclusions in the statement should be explicitly referenced.

Mitigation

The EIS should thoroughly identify and describe appropriate mitigation measures associated with the project, specifying which ones are committed to by the mine operator and required by the Forest Service. The discussion should address how each measure would specifically mitigate the targeted impact, provide substantial detail on the means of implementing each mitigation measure, identify who would be responsible for implementing it, indicate whether it is enforceable, and describe its anticipated effectiveness. For some impacts, there may be several appropriate and effective measures. Conversely, some measures may turn out to be less effective than anticipated; therefore, implementation and effectiveness monitoring should be conducted and contingency measures should be considered. We recommend the EIS describe the implementation and effectiveness monitoring that would be conducted and contingency measures that would be applied if initial mitigation measures fail.

Water Resources

1. The EIS should describe all existing water resources in the project vicinity and the cumulative impact area. Describe baseline groundwater and surface water quality and quantity in the project area, specifying any changes that could be attributed to past exploration or mining activities. Discuss groundwater adjudication in the project vicinity.
2. The EIS should completely describe the pre-mining, current, and projected drainage patterns in the project area, including post-closure drainage patterns. Include hydrologic and topographic maps of the project area and cumulative impact area. This discussion should address potential effects of the project on erosion potential and sedimentation. Identify any components of the proposed project that would fall within 25- and 100-year flood plains. Discuss the potential for flash floods to transport sediment or contaminants from disturbed areas at the mine to any surface waters.

3. The EIS should describe the applicable state-adopted, EPA-approved water quality standards, including beneficial uses, and discuss each alternative's compliance with these standards. The EIS should describe and discuss the permits that would be required by state and federal agencies for water resources related to the project.

4. The EIS should discuss the applicability of California's Industrial Activities Stormwater General Permit to this project. The EIS should include a storm water pollution prevention plan and discuss specific mitigation measures that may be necessary. Discuss whether an individual National Pollution Discharge Elimination System (NPDES) permit would be required for any phase of the project. If an NPDES permit would be required, the EIS should describe how the project would meet permitting requirements for discharges to surface waters.

5. The EIS should describe all surface water discharges from the site, including storm water and mine drainage.
 - Discuss the potential for contamination of precipitation that contacts waste rock, stockpiles, roads, or other mine facilities. Describe mitigation measures to prevent this contamination.
 - Describe the designs of the run-on/run-off channels, collection and sedimentation ponds, and any necessary treatment or disposal of these solutions. Depict these facilities on a map.
 - Describe flow velocities of all discharges to surface waters and discuss whether these discharges could adversely affect these waters.

6. Discuss how accidental releases of hazardous materials would be handled. Identify the potential impacts of failure of the solution containment systems, methods for discovering such failures, and the degree to which impacts would be reversible. Describe the quarry's petroleum-contaminated soil management plan.

7. The EIS should discuss all direct, indirect, and cumulative impacts to surface water and groundwater quality and quantity from the proposed project and alternatives both during operations and after closure. The EIS should describe all potential project discharges, seepage, diversions, groundwater pumping, and the potential effects of pumping or diversions on water rights.

8. The EIS should identify all sources of water needed for the project, and describe the potential environmental impacts associated with using these sources. The EIS should describe dewatering systems and estimate rates of dewatering and water use by the proposed project, as well as all
other water use in the vicinity. Identify direct, indirect, and cumulative impacts to surface water flow, water supply wells, wetlands, springs and seeps, vegetation, wildlife, and other groundwater-dependent resources as a result of groundwater pumping associated with the proposed project. (See "Vegetation and Wildlife," below). Describe post-closure groundwater elevation recovery.

9. The EIS should describe procedures for water quality and quantity monitoring and reporting as well as monitoring the functioning of the run-on/run-off channels, sedimentation ponds, and other mitigation measures at the mine. Describe all surface water monitoring locations, groundwater monitoring wells, and points of compliance on the site. Monitoring frequencies, screening intervals, and parameters to be monitored should be discussed.

10. The EIS should describe in detail the proposed facility design and operation, as well as maintenance and monitoring activities to ensure integrity of facilities throughout project operations, closure, and post-closure.

Waters of the U.S.

1. The Forest Service should coordinate with the U.S. Army Corps of Engineers to determine whether the proposed project requires a Clean Water Act Section 404 permit. Section 404 regulates the discharge of dredged or fill material into waters of the United States, including wetlands and other "special aquatic sites." The EIS should describe all waters of the U.S. that could be affected by the project, including past impacts. The discussion should include acreages and channel lengths, habitat types, values, and functions of these waters. All required Federal and State permits for work potentially affecting wetlands or waters of the U.S. should be identified. The EIS should address opportunities for improving the quality and quantity of these resources through appropriate facilities design if they exist in the study area.

2. If a permit is required, EPA will review the project for compliance with Federal Guidelines for Specification of Disposal Sites for Dredged or Fill Materials (40 CFR 230), promulgated pursuant to Section 404(b)(1) of the Clean Water Act ("404(b)(1) Guidelines"). Pursuant to 40 CFR 230, any permitted discharge into waters of the U.S. must be the least environmentally damaging practicable alternative available to achieve the project purpose. The EIS should include an evaluation of the project alternatives in this context in order to demonstrate the project’s compliance with the 404(b)(1) Guidelines. If, under the proposed project, dredged or fill material would be discharged into waters of the U.S., the EIS should describe the potential environmental impacts and discuss alternatives to avoid or minimize those discharges.

3. If a discharge is permitted, required mitigation for impacts to waters of the U.S. should be identified and committed to in the EIS for evaluation by the public and decision-makers. Mitigation should be implemented in advance of the impacts to avoid habitat losses due to the lag time between the occurrence of the impact and successful mitigation. The discussion should include the following information:

- Acreage and habitat type of waters of the U.S. that would be created or restored;
- Water sources to maintain the mitigation area;
The revegetation plans including the numbers and age of each species to be planted;
- Maintenance and monitoring plans, including performance standards to determine mitigation success;
- The size and location of mitigation zones;
- The parties that would be ultimately responsible for the plan's success; and
- Contingency plans that would be implemented if the original plan fails.

Air Quality

1. The EIS should describe existing air quality in the project vicinity. The EIS should also discuss the National Ambient Air Quality Standards (NAAQS) applicable to air quality in the project area.

2. The EIS should estimate project emissions from all facilities, roads, construction, and blasting related to the quarry's operations, including any off-site processing and support activities, such as vehicle traffic and delivery trucks for fuels, maintenance supplies, and other materials, as well as cumulative emissions from other sources in the project area.

3. We understand that the Forest Service will be closely coordinating with the Mojave Desert Air Quality Management District (MDAQMD), a cooperating agency on this project, regarding regulatory requirements and controls. The EIS should demonstrate that the direct and indirect emissions from all phases of the project conform to the approved State Implementation Plan (SIP) and do not cause or contribute to violations of the NAAQS. Modeling should be conducted to determine concentrations of criteria air pollutants for an accurate comparison with the NAAQS, as well as emissions in tons per year for purposes of demonstrating whether the project would exceed general conformity de minimis thresholds. EPA encourages the Forest Service to work with the MDAQMD in developing the Draft General Conformity Determination for the project and to identify additional mitigation measures that would be necessary. We also recommend that the Draft General Conformity Determination be included in the Final EIS, either as a detailed summary or as an appendix.

4. The EIS should identify all air permits and/or permit modifications that would be needed for the proposed project and discuss how the project would meet permitting requirements.

5. The EIS should identify all Class I Prevention of Significant Deterioration (PSD) areas located within 100 kilometers of the proposed project site. Class I areas even further away could potentially be affected as well. Potential impacts to Class I PSD areas, including visibility impacts, should be discussed.

6. The EIS should discuss mitigation measures to minimize air pollutant emissions from the quarry. Appropriate measures exist that could be used to control PM10 (particulate matter smaller than 10 microns) emissions, as well as diesel particulate matter (DPM) and other criteria pollutants, from fugitive sources at the quarry. In addition to road watering or other dust palliatives, we recommend the following emissions reduction measures.
- Use particle traps and other appropriate controls to reduce emissions of DPM and other air pollutants. Traps control approximately 80 percent of DPM, and specialized catalytic converters (oxidation catalysts) control approximately 20 percent of DPM, 40 percent of carbon monoxide emissions, and 50 percent of hydrocarbon emissions;
- Minimize project-related trips of workers and equipment, including trucks and heavy equipment;
- Lease or buy newer, cleaner equipment (1996 or newer model);
- Employ periodic, unscheduled inspections to ensure that construction equipment is properly maintained at all times and does not unnecessarily idle, is tuned to manufacturer's specifications, and is not modified to increase horsepower except in accordance with established specifications.

7. The EIS should discuss whether and how air quality monitoring would be implemented to ensure project compliance with all applicable air quality standards and permits.

8. The EIS should estimate emissions of hazardous air pollutants (HAPs) from the proposed project, and the potential direct, indirect, and cumulative impacts of those emissions for each alternative. The analysis should include HAPs emissions from any off-site facilities and transport vehicles associated with the proposed project, such as employee transport, haul trucks, and delivery trucks for fuels, maintenance supplies, and other materials.

Climate Change

EPA recommends that the EIS identify the cumulative contributions to greenhouse gas emissions that will result from implementation of the proposed project. In addition, we recommend the EIS discuss the potential impacts of climate change on the project. The EIS should also identify any specific mitigation measures needed to (1) protect the project from the effects of climate change (e.g., changes to storm magnitude or frequency), (2) reduce the project’s adverse air quality effects, and/or (3) promote pollution prevention and environmental stewardship.

Any sustainable design and operation measures that can be identified as reducing greenhouse gases should be identified in the EIS with an estimate of the greenhouse gas emissions reductions that would result if measures were implemented. The EIS should indicate whether these measures would be required in the Plan of Operations. Attention should be paid to explaining the quality of each greenhouse gas mitigation measure – including its permanence, verifiability and enforceability. We offer the following potential measures for the Forest Service’s consideration:

- Incorporate alternative energy components into the project such as on site distributed generation systems, solar thermal hot water heating, etc.;
- Incorporate recovery and reuse, leak detection, pollution control devices, maintenance of equipment, product substitution and reduction in quantity used or generated;
- Include use of alternative transportation fuels, biodiesel, electric vehicles, ethanol, etc. during construction and operation if applicable;
- Commit to using high efficiency diesel particulate filters on new and existing diesel engines to provide nearly 99.9% reductions of black carbon emissions.
Vegetation and Wildlife

1. We recommend that the Forest Service work closely with the U.S. Fish and Wildlife Service (USFWS) and the California Department of Fish and Game to determine potential impacts of the project on plant and wildlife species, especially species classified rare, threatened, or endangered on either state or federal lists. The EIS should include the following information:

- Identify all petitioned and listed threatened and endangered species and critical habitat, as well as sensitive species, that might occur within the project area;
- Identify which species or critical habitat could potentially be directly, indirectly, or cumulatively affected by each alternative;
- Discuss how surveys were conducted for each species, the findings of each survey, and all follow-up surveys and monitoring that would be conducted before, during, and/or after mining occurs;
- Include the biological assessment by reference or as an appendix, if one is prepared;
- Discuss how and when the Forest Service intends to meet its obligations under Section 7 of the Endangered Species Act; and
- If a biological opinion is prepared by the USFWS, it should be summarized or included as an appendix in the Final EIS to demonstrate that the preferred alternative is consistent with the biological opinion.

2. The EIS should discuss the mitigation measures that would be taken to prevent exposure of migratory waterfowl and other wildlife to any toxic solutions or spills, and discuss the effectiveness of these measures. Describe maintenance requirements and monitoring to ensure their effectiveness.

3. The EIS should identify non-jurisdictional wetland and riparian habitat as well as other unique or important habitat areas, such as carbonate habitat, which could be affected by the project. The EIS should describe their functions and values and the acreages likely to be affected. The EIS should address opportunities for improving the quality and quantity of these areas in designing facilities. The EIS should discuss avoidance, minimization, and mitigation of losses or modification of habitat and plant and animal species composition. Mitigation should be implemented in advance of the impacts to avoid habitat losses due to the lag time between the occurrence of the impact and successful mitigation. We recommend that the EIS include a detailed mitigation plan, and include the following information:

- Acreage and habitat type that would be created or restored;
- Water sources to maintain the mitigation area, if needed;
- The revegetation plans including the numbers and age of each species to be planted;
- Maintenance and monitoring plans, including performance standards to determine mitigation success;
- The size and location of mitigation zones;
- The parties that would be ultimately responsible for the plan’s success; and
- Contingency plans that would be enacted if the original plan fails.
Quarry Closure and Reclamation

1. The EIS should describe discuss the following components of the reclamation plan:
 - A detailed account of measures taken to decommission mine operations and stabilize and revegetate slopes, waste rock facilities, roads and other areas;
 - Identification (including estimated acreage) of the areas targeted for reclamation, and description of the intended degree of treatment in each area;
 - Estimation of any irrigation requirements;
 - Timing of reclamation relative to mining operations and duration of reclamation treatment;
 - Standards for determining and means of assuring successful reclamation; and
 - Means of assuring that all maintenance required for reclaimed areas would continue after operations cease or while operations are suspended.

2. The EIS should describe the availability, properties, and sources of growth medium, discuss how growth medium will be applied to disturbed areas, and identify any additional measures (e.g., amendments) that may be needed to ensure successful reclamation and revegetation of the project site.

3. We recommend that revegetation be accomplished with only native species indigenous to the area in order to restore the ecosystem to as natural a state as possible after mine closure. We also recommend that revegetation success be monitored and enforced for at least five years following revegetation efforts. First or second year success in meeting the revegetation standards is not necessarily indicative of long-term success.

4. We recommend that the EIS discuss provisions that would be made for post-operation surveillance to ensure that site closure and stabilization has been effective. Describe the mitigation actions that would be taken should destabilization or contamination be detected, and identify who would be responsible for these actions.

5. EPA recommends that the EIS identify the bond amounts for closure and reclamation of proposed project facilities and discuss how the Forest Service can modify the bond during the course of operations if reclamation needs change during operations.

Environmental Justice

Executive Order 12898 on Environmental Justice addresses disproportionate adverse impacts of federal actions on minority and low-income populations. The EIS should identify minority and low-income populations, and address whether the alternatives would cause any disproportionate adverse impact, such as displacement, changes in existing resources or access, or community disruption. The document should also explore potential mitigation measures for any adverse environmental justice effects. The EIS should describe the measures taken by the Forest Service to: (1) fully analyze the environmental effects of the proposed Federal action on minority communities and low-income populations; and (2) present opportunities for affected
communities to provide input into the NEPA process. The EIS should state whether the analysis meets requirements of your agency’s environmental justice strategy.

Government-to-Government Consultation

The EIS should discuss the Forest Service’s consultation with all Native American tribal governments that could be potentially affected by the proposed project or may have resources (e.g., traditional cultural properties, groundwater resources) that could be affected. The principals for interactions with tribal governments are outlined in an April 29, 1994, presidential memorandum and Executive Order 13175, dated November 6, 2000. It is important that formal government-to-government consultation take place early in the scoping phase of the project to ensure that all issues are adequately addressed in the Draft EIS.

Land Use

The EIS should describe any special uses, such as livestock grazing, which comprise on-going activities in the project vicinity and discuss how these activities could potentially be affected by the proposed project. The EIS should describe the nearby natural conservation areas, wilderness areas, or other specially designated areas, and discuss how they could be affected by the proposed project.

Pollution Prevention

Pursuant to the Pollution Prevention Act of 1990,

“Pollution should be prevented or reduced at the source whenever feasible; pollution that cannot be prevented should be recycled in an environmentally safe manner, whenever feasible; pollution that cannot be prevented or recycled should be treated in an environmentally safe manner whenever feasible; and disposal or other release into the environment should be employed only as a last resort and should be conducted in an environmentally safe manner.”

There are significant opportunities for industry to reduce or prevent pollution at the source through cost-effective changes in production, operation, and raw materials use. Such changes offer mining companies substantial savings in reduced raw material, pollution control, and liability costs as well as help protect the environment and reduce risks to worker health and safety. We recommend that the Forest Service and the project proponent actively pursue pollution prevention techniques to prevent or reduce pollution at the proposed mine.

Cumulative Impacts

According to the Council on Environmental Quality (CEQ) regulations implementing NEPA, a cumulative impact is “...the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time.” [40 CFR 1508.7].
Cumulative impacts analyses are important as they assess the threats to resources as a whole. Understanding cumulative impacts can illuminate opportunities for minimizing those threats. The EIS should describe the potential cumulative impacts associated with the proposed project and alternatives in light of other past, present, and reasonably foreseeable future actions, including the cement plant and ancillary facilities. The EIS should describe the methodology used to assess cumulative impacts. Guidance on how to analyze cumulative impacts has been published by the CEQ1 and EPA2. In addition, you may also wish to refer to http://www.dot.ca.gov/ser/cumulative_guidance/purpose.htm. This cumulative impact guidance was prepared by the California Department of Transportation, the Federal Highway Administration, and EPA Region 9 for transportation projects in California. However, the principles and the 8-step process in this guidance can be applied to other types of projects, both within and outside of California. We recommend the principles and steps in this guidance to other agencies as a systematic way to analyze cumulative impacts for their projects. We have the following recommendations for structuring cumulative impacts analyses:

- The description of the affected environment should focus on each affected resource or ecosystem. Determination of the affected environment should not be based on a predetermined geographic area, but rather on perception of meaningful impacts and natural boundaries.
- Focus on resources of concern, i.e., those resources that are at risk and/or are significantly affected by the proposed project, before mitigation. Identify which resources are analyzed, which ones are not, and why;
- Identify all other on-going, planned, and reasonably foreseeable projects in the study area, not just mining projects, which may contribute to cumulative impacts. Where studies exist on the environmental impacts of these other projects, use these studies as a source for quantifying cumulative impacts;
- Include appropriate baselines for the resources of concern with an explanation as to why those baselines were selected; and
- When cumulative impacts occur, the EIS should discuss appropriate mitigation measures, clearly indicating who will be responsible for mitigation measures and how mitigation implementation will be ensured.
